-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
176 lines (155 loc) · 8.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from __future__ import print_function
import argparse
import os
from VAE_up import VAEpeptide
"""get choices for implemented dataset"""
def get_choices():
choice_list = []
#['mnist', 'fashion-mnist', 'celebA', 'samples', 'm_526', 'm_10437',
# 'a_500', 'b1_500', 'b2_500', 'a_1000', 'b1_1000', 'b2_1000',
# 'a_10000', 'b1_10000', 'b2_10000', 'var_gauss', 'ala_2']
choice_list.append('ma_50')
choice_list.append('ma_100')
choice_list.append('ma_200')
choice_list.append('ma_500')
#choice_list.append('ma_1500')
#choice_list.append('ma_4000')
#choice_list.append('ma_13334')
#choice_list.append('m_ala_15')
#choice_list.append('m_100_ala_15')
#choice_list.append('m_200_ala_15')
choice_list.append('m_300_ala_15')
#choice_list.append('m_500_ala_15')
choice_list.append('m_1500_ala_15')
choice_list.append('m_3000_ala_15')
choice_list.append('m_5000_ala_15')
#choice_list.append('m_10000_ala_15')
#choice_list.append('m_20000_ala_15')
#for strN in ['1527', '4004']:
# choice_list.append('m_'+strN)
# choice_list.append('b1b2_' + strN)
# choice_list.append('ab1_' + strN)
# choice_list.append('ab2_' + strN)
return choice_list
"""parsing and configuration"""
def parse_args():
desc = "Pytorch implementation of Predictive Collective Variable Discovery with Deep Bayesian Models"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--mod_type', type=str, default='VAE',
choices=['GAN', 'CGAN', 'infoGAN', 'ACGAN', 'EBGAN', 'BEGAN', 'WGAN', 'WGAN_GP',
'DRAGAN', 'LSGAN', 'WGAN_peptide', 'GAN_peptide', 'VAE', 'VARjoint'],
help='The type of model to be trained.')
parser.add_argument('--dataset', type=str, default='mnist',
choices=get_choices(),
help='The name of dataset. For PCVs, ma_* for ALA2 and m_*_ala_15 for ALA15 works.')
parser.add_argument('--epoch', type=int, default=2000, help='The number of epochs to run.')
parser.add_argument('--batch_size', type=int, default=16, help='The size of batch')
parser.add_argument('--save_dir', type=str, default='models',
help='Directory name to save the model')
parser.add_argument('--result_dir', type=str, default='results',
help='Directory name to save the generated images')
parser.add_argument('--log_dir', type=str, default='logs',
help='Directory name to save training logs')
parser.add_argument('--lrG', type=float, default=0.0001)
parser.add_argument('--lrD', type=float, default=0.0001)
parser.add_argument('--beta1', type=float, default=0.5)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--gpu_mode', type=int, default=0)
parser.add_argument('--clusterND', type=int, default=0, help='Irrelevant option for pubilc.')
parser.add_argument('--outPostFix', type=str, default='')
parser.add_argument('--n_critic', type=int, default=5)
parser.add_argument('--clipping', type=float, default=0.01)
parser.add_argument('--z_dim', type=int, default=2)
parser.add_argument('--samples_pred', type=int, default=4000)
parser.add_argument('--useangulardat', type=str, default='no',
choices=['no', 'ang', 'ang_augmented', 'ang_auggrouped'], help='Irrelevant for PCVs since not applied.')
parser.add_argument('--seed', type=int, default=3251,
help='random seed (default: 0), 0 for no seed.')
parser.add_argument('--AEVB', type=int, default=1,
help='Use Auto-Encoding Variational Bayes. If not, formulation relates to adversarial learning.')
parser.add_argument('--Z', type=int, default=1,
help='Relevant for variational approach. Amount of samples from p(z).')
parser.add_argument('--L', type=int, default=1,
help='Samples from eps ~ p(eps) for VAE.')
parser.add_argument('--samples_per_mean', type=int, default=3,
help='Amount of predictive samples for p(x|z) = N(mu(z), sigma(z)). If 0, mean prediction is used: mu(z).')
parser.add_argument('--npostS', type=int, default=0, help='Amount of posterior samples.')
parser.add_argument('--uqbias', type=int, default=1, help='Quantify uncertainty of bias terms in network.')
parser.add_argument('--exppriorvar', type=float, default=0., help='lambda of exp(-lambda theta. If 0, no prior employed')
parser.add_argument('--sharedlogvar', type=int, default=1,
help='Sharing the logvariance instead of cosidering a variance dpendent on the decoding network.')
parser.add_argument('--sharedencoderlogvar', type=int, default=0,
help='Sharing the logvariance of the ENCODER, instead of cosidering a variance dpendent on the encoding network. This only applies for VARJ not VAE.')
parser.add_argument('--loadtrainedmodel', type=str, default='',
help='Provide the path including file of an already trained model for doing predictions.')
parser.add_argument('--ard', type=float, default=0., help='Value of a0 for ARD prior. If 0. then no ARD prior is applyed.')
parser.add_argument('--exactlikeli', type=int, default=0, help='Perform leveraging the likelihood.')
parser.add_argument('--outputfreq', type=int, default=500, help='Output frequency during the optimization process.')
parser.add_argument('--x_dim', type=int, default=2, help='Just for variational approach - not for PCVs since not applied. Test to predict gaussian of dim x_dim.')
parser.add_argument('--assignrandW', type=int, default=0,
help='Just for variational approach. Assign uniformly random variables to reference W.')
parser.add_argument('--freeMemory', type=int, default=0,
help='Just for variational approach. Free memory during estimation of the loss function.')
parser.add_argument('--stepSched', type=int, default=1, help='Use step scheduler module druing optimization. No effect for PCVs since not applied.')
parser.add_argument('--betaVAE', type=float, default=1., help='Beta value for enforcing beta * KL(q(z|x) || p(z)). See https://openreview.net/pdf?id=Sy2fzU9gl. No effect for PCVs since not applied.')
parser.add_argument('--separateLearningRate', type=int, default=0, help='This applies to separate learning rates between NN parameters and the parameters for the variances. Applies only if en- or decoding variance is modeled as parameter. No effect for PCVs since not applied.')
parser.add_argument('--redDescription', type=int, default=0, help='Only relevant for reverse var. approach. This removes 6 DOFs from x to implicitly remove the rigid body motion. No effect for PCVs since not applied.')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(args):
# --epoch
try:
assert args.epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
# --batch_size
try:
assert args.batch_size >= 1
except:
print('batch size must be larger than or equal to one')
return args
"""main"""
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
# declare instance for model
if args.mod_type == 'GAN':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'CGAN':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'ACGAN':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'infoGAN':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'EBGAN':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'WGAN':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'WGAN_peptide':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'GAN_peptide':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'WGAN_GP':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'DRAGAN':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'LSGAN':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'BEGAN':
print('Not content of Predictive CV Discovery.')
elif args.mod_type == 'VAE':
modt = VAEpeptide(args)
elif args.mod_type == 'VARjoint':
print('Not content of Predictive CV Discovery.')
else:
raise Exception("[!] There is no option for " + args.mod_type)
# launch the graph in a session
modt.train()
print(" [*] Training finished!")
# visualize learned generator
# gan.visualize_results(args.epoch)
print(" [*] Testing finished!")
if __name__ == '__main__':
main()