-
Notifications
You must be signed in to change notification settings - Fork 514
/
Copy pathrender_ctypes.py
89 lines (66 loc) · 2.4 KB
/
render_ctypes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# coding: utf-8
"""
Borrowed from https://github.com/1996scarlet/Dense-Head-Pose-Estimation/blob/main/service/CtypesMeshRender.py
To use this render, you should build the clib first:
```
cd utils/asset
gcc -shared -Wall -O3 render.c -o render.so -fPIC
cd ../..
```
"""
import sys
sys.path.append('..')
import os.path as osp
import cv2
import numpy as np
import ctypes
from utils.functions import plot_image
make_abs_path = lambda fn: osp.join(osp.dirname(osp.realpath(__file__)), fn)
class TrianglesMeshRender(object):
def __init__(
self,
clibs,
light=(0, 0, 5),
direction=(0.6, 0.6, 0.6),
ambient=(0.3, 0.3, 0.3)
):
if not osp.exists(clibs):
raise Exception(f'{clibs} not found, please build it first, by run '
f'"gcc -shared -Wall -O3 render.c -o render.so -fPIC" in utils/asset directory')
self._clibs = ctypes.CDLL(clibs)
self._light = np.array(light, dtype=np.float32)
self._light = np.ctypeslib.as_ctypes(self._light)
self._direction = np.array(direction, dtype=np.float32)
self._direction = np.ctypeslib.as_ctypes(self._direction)
self._ambient = np.array(ambient, dtype=np.float32)
self._ambient = np.ctypeslib.as_ctypes(self._ambient)
def __call__(self, vertices, triangles, bg):
self.triangles = np.ctypeslib.as_ctypes(3 * triangles) # Attention
self.tri_nums = triangles.shape[0]
self._clibs._render(
self.triangles, self.tri_nums,
self._light, self._direction, self._ambient,
np.ctypeslib.as_ctypes(vertices),
vertices.shape[0],
np.ctypeslib.as_ctypes(bg),
bg.shape[0], bg.shape[1]
)
render_app = TrianglesMeshRender(clibs=make_abs_path('asset/render.so'))
def render(img, ver_lst, tri, alpha=0.6, show_flag=False, wfp=None, with_bg_flag=True):
if with_bg_flag:
overlap = img.copy()
else:
overlap = np.zeros_like(img)
for ver_ in ver_lst:
ver = np.ascontiguousarray(ver_.T) # transpose
render_app(ver, tri, bg=overlap)
if with_bg_flag:
res = cv2.addWeighted(img, 1 - alpha, overlap, alpha, 0)
else:
res = overlap
if wfp is not None:
cv2.imwrite(wfp, res)
print(f'Save visualization result to {wfp}')
if show_flag:
plot_image(res)
return res