-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
638 lines (566 loc) · 18.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
<script src="http://www.google.com/jsapi" type="text/javascript"></script>
<script type="text/javascript">google.load("jquery", "1.3.2");</script>
<style type="text/css">
body {
font-family: "HelveticaNeue-Light", "Helvetica Neue Light", "Helvetica Neue", Helvetica, Arial, "Lucida Grande", sans-serif;
font-weight: 300;
font-size: 16px;
margin-left: auto;
margin-right: auto;
width: 1000px;
}
h1 {
font-weight: 300;
}
.disclaimerbox {
background-color: #eee;
border: 1px solid #eeeeee;
border-radius: 10px;
-moz-border-radius: 10px;
-webkit-border-radius: 10px;
padding: 20px;
}
video.header-vid {
height: 140px;
border: 1px solid black;
border-radius: 10px;
-moz-border-radius: 10px;
-webkit-border-radius: 10px;
}
img.header-img {
height: 140px;
border: 1px solid black;
border-radius: 10px;
-moz-border-radius: 10px;
-webkit-border-radius: 10px;
}
img.rounded {
border: 1px solid #eeeeee;
border-radius: 10px;
-moz-border-radius: 10px;
-webkit-border-radius: 10px;
}
a:link,
a:visited {
color: #1367a7;
text-decoration: none;
}
a:hover {
color: #208799;
}
td.dl-link {
height: 160px;
text-align: center;
font-size: 22px;
}
.layered-paper-big {
/* modified from: http://css-tricks.com/snippets/css/layered-paper/ */
box-shadow:
0px 0px 1px 1px rgba(0, 0, 0, 0.35),
/* The top layer shadow */
5px 5px 0 0px #fff,
/* The second layer */
5px 5px 1px 1px rgba(0, 0, 0, 0.35),
/* The second layer shadow */
10px 10px 0 0px #fff,
/* The third layer */
10px 10px 1px 1px rgba(0, 0, 0, 0.35),
/* The third layer shadow */
15px 15px 0 0px #fff,
/* The fourth layer */
15px 15px 1px 1px rgba(0, 0, 0, 0.35),
/* The fourth layer shadow */
20px 20px 0 0px #fff,
/* The fifth layer */
20px 20px 1px 1px rgba(0, 0, 0, 0.35),
/* The fifth layer shadow */
25px 25px 0 0px #fff,
/* The fifth layer */
25px 25px 1px 1px rgba(0, 0, 0, 0.35);
/* The fifth layer shadow */
margin-left: 10px;
margin-right: 45px;
}
.layered-paper {
/* modified from: http://css-tricks.com/snippets/css/layered-paper/ */
box-shadow:
0px 0px 1px 1px rgba(0, 0, 0, 0.35),
/* The top layer shadow */
5px 5px 0 0px #fff,
/* The second layer */
5px 5px 1px 1px rgba(0, 0, 0, 0.35),
/* The second layer shadow */
10px 10px 0 0px #fff,
/* The third layer */
10px 10px 1px 1px rgba(0, 0, 0, 0.35);
/* The third layer shadow */
margin-top: 5px;
margin-left: 10px;
margin-right: 30px;
margin-bottom: 5px;
}
.vert-cent {
position: relative;
top: 50%;
transform: translateY(-50%);
}
hr {
border: 0;
height: 1.5px;
background-image: linear-gradient(to right, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0.75), rgba(0, 0, 0, 0));
}
.author_image {
text-align: center;
}
* {box-sizing: border-box;}
.img-comp-container {
position: relative;
width : 722px;
height: 512px;
margin: 0 auto;
}
.img-comp-img {
position: absolute;
object-position: 0 0;
width: 100%;
height: 100%;
object-fit: cover;
overflow: hidden;
}
.img-comp-img img {
display:block;
vertical-align:middle;
}
.img-comp-overlay img {
display: block;
vertical-align: middle;
object-position: 0 0;
width: auto;
height: 100%;
object-fit: cover;
}
.img-comp-slider {
position: absolute;
z-index:9;
cursor: ew-resize;
/*set the appearance of the slider:*/
width: 40px;
height: 40px;
background-color: #2196F3;
opacity: 0.7;
border-radius: 50%;
}
.previous,
.next {
cursor: pointer;
position: absolute;
top: 40%;
width: auto;
padding: 16px;
margin-top: 30px;
color: deepskyblue;
font-weight: bold;
font-size: 20px;
border-radius: 0 3px 3px 0;
user-select: none;
-webkit-user-select: none;
}
.next {
right: 0;
border-radius: 3px 0 0 3px;
}
.previous:hover,
.next:hover {
background-color: rgba(0, 0, 0, 0.8);
}
.dot {
cursor: pointer;
height: 15px;
width: 15px;
margin: 0 2px;
background-color: #bbb;
border-radius: 50%;
display: inline-block;
transition: background-color 0.6s ease;
}
.active, .dot:hover {
background-color: #717171;
}
</style>
<script>
function initComparisons() {
var x, i;
/* Find all elements with an "overlay" class: */
c = document.getElementsByClassName("img-comp-container")[0];
c.addEventListener('mouseenter', pause);
c.addEventListener('mouseleave', resume);
x = document.getElementsByClassName("img-comp-overlay");
for (i = 0; i < x.length; i++) {
/* Once for each "overlay" element:
pass the "overlay" element as a parameter when executing the compareImages function: */
compareImages(x[i]);
}
function pause(){
clearInterval(myTimer);
}
function resume(){
clearInterval(myTimer);
myTimer = setInterval(function(){plusSlides(slideIndex)}, 5000);
}
function compareImages(img) {
var slider, img, clicked = 0, w, h;
/* Get the width and height of the img element */
w = img.offsetWidth;
h = img.offsetHeight;
/* Set the width of the img element to 50%: */
img.style.width = (w/2 ) + "px";
/* Create slider: */
slider = document.createElement("DIV");
slider.setAttribute("class", "img-comp-slider");
/* Insert slider */
img.parentElement.insertBefore(slider, img);
/* Position the slider in the middle: */
slider.style.top = (h / 2) - (slider.offsetHeight / 2) + "px";
slider.style.left = (w / 2) - (slider.offsetWidth / 2) + "px";
/* Execute a function when the mouse button is pressed: */
slider.addEventListener("mousedown", slideReady);
/* And another function when the mouse button is released: */
window.addEventListener("mouseup", slideFinish);
/* Or touched (for touch screens: */
slider.addEventListener("touchstart", slideReady);
/* And released (for touch screens: */
window.addEventListener("touchend", slideFinish);
function slideReady(e) {
/* Prevent any other actions that may occur when moving over the image: */
e.preventDefault();
/* The slider is now clicked and ready to move: */
clicked = 1;
/* Execute a function when the slider is moved: */
window.addEventListener("mousemove", slideMove);
window.addEventListener("touchmove", slideMove);
}
function slideFinish() {
/* The slider is no longer clicked: */
clicked = 0;
}
function slideMove(e) {
var pos;
/* If the slider is no longer clicked, exit this function: */
if (clicked == 0) return false;
/* Get the cursor's x position: */
pos = getCursorPos(e)
/* Prevent the slider from being positioned outside the image: */
if (pos < 0) pos = 0;
if (pos > w) pos = w;
/* Execute a function that will resize the overlay image according to the cursor: */
slide(pos);
}
function getCursorPos(e) {
var a, x = 0;
e = e || window.event;
/* Get the x positions of the image: */
a = img.getBoundingClientRect();
/* Calculate the cursor's x coordinate, relative to the image: */
x = e.pageX - a.left;
/* Consider any page scrolling: */
x = x - window.pageXOffset;
return x;
}
function slide(x) {
/* Resize the image: */
img.style.width = x + "px";
/* Position the slider: */
slider.style.left = img.offsetWidth - (slider.offsetWidth / 2) + "px";
}
}
}
function initSlideShow(n){
myTimer=setInterval(function(){plusSlides(1)},5000);
}
function plusSlides(n) {
showSlides(slideIndex += n);
}
function currentSlide(n) {
showSlides(slideIndex = n);
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName("mySlides");
var dots = document.getElementsByClassName("dot");
var captionText = document.getElementById("caption");
if (n > slides.length) {slideIndex = 1}
if (n < 1) {slideIndex = slides.length}
for (i = 0; i < slides.length; i++) {
slides[i].style.display = "none";
}
for (i = 0; i < dots.length; i++) {
dots[i].className = dots[i].className.replace(" active", "");
}
slides[slideIndex-1].style.display = "block";
dots[slideIndex-1].className += " active";
captionText.innerHTML = dots[slideIndex-1].alt;
}
function changeImg(n,target){
n.parentNode.childNodes[1].style.backgroundColor = "rgba(0, 0, 0, 0.4)";
n.parentNode.childNodes[3].style.backgroundColor = "rgba(0, 0, 0, 0.4)";
n.style.backgroundColor = "rgba(0, 191, 255, 0.5)";
var img = n.parentNode.getElementsByTagName('img')[0];
var name = img.src;
var sp = name.split("/");
var path = target.concat("/",sp[sp.length-1]);
img.src = path;
}
</script>
<html>
<head>
<title>Single Image Depth Prediction Made Better: A Multivariate Gaussian Take</title>
<meta property="og:image" content="" />
<meta property="og:title" content="Single Image Depth Prediction Made Better: A Multivariate Gaussian Take" />
<link href='https://fonts.googleapis.com/css?family=Lora:400italic' rel='stylesheet' type='text/css'>
</head>
<body>
<br>
<center>
<span style="font-size:36px">Single Image Depth Prediction Made Better: <br> A Multivariate Gaussian Take</span>
</center>
<br>
<table align=center width=750px>
<tr>
<td align=center width=100px>
<center>
<span style="font-size:18px"><a href="https://github.com/cnexah">Ce Liu</a><sup>1</sup></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:18px"><a href="https://suryanshkumar.github.io/">Suryansh Kumar</a><sup>1</sup></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:18px"><a href="https://shuhanggu.github.io">Shuhang Gu</a><sup>2</sup></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:18px"><a href="https://www.informatik.uni-wuerzburg.de/computervision/home">Radu Timofte</a><sup>1, 3</sup></span>
</center>
</td>
<td align=center width=100px>
<center>
<span style="font-size:18px"><a href="https://scholar.google.com/citations?user=TwMib_QAAAAJ&hl=en">Luc Van Gool</a><sup>1, 4</sup></span>
</center>
</td>
</tr>
</table>
<table align=center width=700px>
<tr>
<td align=center width=100px>
<center>
<span style="font-size:20px">CVL ETH Zürich<sup>1</sup>, UESTC China<sup>2</sup>, University of Würzburg<sup>3</sup>, KU Lueven<sup>4</sup></span>
</center>
</td>
</tr>
</table>
<table align=center width=1000px>
<tr>
<td align=center width=150px>
<center>
<span style="font-size:20px">The <span style="font-weight:bold">IEEE/CVF Conference on Computer Vision and Pattern Recognition</span> (CVPR), 2023.
</span>
</center>
</td>
</tr>
</table>
<br>
<!-- Image for the project-->
<table align=center width=900px>
<tr>
<td width=450px>
<center>
<a><img src="./images/teaser.png" height="200px"></img></href></a><br>
</center>
</td>
</tr>
</table>
<br>
<hr>
<!-- Abstract of the project-->
<p style="text-align: justify;">
<span style="font-weight:bold">Abstract</span>
<br>
<font style="font-family: Lora; font-size: 100%">
Neural-network-based single image depth prediction (SIDP) is a challenging task where the goal is to predict the scene's per-pixel depth at test time. Since the problem, by definition, is ill-posed, the fundamental goal is to come up with an approach that can reliably model the scene depth from a set of training examples. In the pursuit of perfect depth estimation, most existing state-of-the-art learning techniques predict a single scalar depth value per-pixel. Yet, it is well-known that the trained model has accuracy limits and can predict imprecise depth. Therefore, an SIDP approach must be mindful of the expected depth variations in the model's prediction at test time. Accordingly, we introduce an approach that performs continuous modeling of per-pixel depth, where we can predict and reason about the per-pixel depth and its distribution. To this end, we model per-pixel scene depth using a multivariate Gaussian distribution.
Moreover, contrary to the existing uncertainty modeling methods---in the same spirit, where per-pixel depth is assumed to be independent, we introduce per-pixel covariance modeling that encodes its depth dependency w.r.t. all the scene points. Unfortunately, per-pixel depth covariance modeling leads to a computationally expensive continuous loss function, which we solve efficiently using the learned low-rank approximation of the overall covariance matrix. Notably, when tested on benchmark datasets such as KITTI, NYU, and SUN-RGB-D, the SIDP model obtained by optimizing our loss function shows state-of-the-art results. Our method's accuracy (named MG) is among the top on the KITTI depth-prediction benchmark leaderboard.
</font>
</p><br><br>
<hr>
<!--Paper title, thumbnails, and publication details -->
<table align=center width=1000>
<center>
<h1>Paper</h1>
</center>
<tr>
<td><a href="https://arxiv.org/abs/2303.18164"><img style="height:200px" src="./images/papershot2.png" /></a></td>
<td><span style="font-size:16pt">Single Image Depth Prediction Made Better: A Multivariate Gaussian Take<br><br>
<i>Ce Liu, Suryansh Kumar, Shuhang Gu, Radu Timofte, Luc Van Gool.</i><br><br>
<span style="font-weight:bold">CVPR</span> 2023, Vancouver, Canada.<br></td>
</tr>
</table>
<br>
<!-- paper link, supplementary link, bibtex link-->
<table align=center width=250px>
<tr>
<td>
<span style="font-size:14pt">
<center><a href="https://arxiv.org/abs/2303.18164">[Paper]</a>
</center>
</span>
</td>
<td>
<span style="font-size:14pt">
<center><a href="https://drive.google.com/drive/folders/1yJER3eQrQ4UItPv4m8wqfcwAQ4Tgcnb_?usp=sharing">[Code]</a>
</center>
</span>
</td>
<td><span style="font-size:14pt">
<center><a href="./bibtex.txt">[Bibtex]</a></center>
</td>
</tr>
</table>
<br>
<hr>
<!--Poster-->
<center>
<h1>Poster</h1>
</center><br>
<table align=center width=1000px>
<tr height="500px">
<td valign="top" width=1000px>
<center>
<img src="images/poster.png" width="1000px" height="500px"/>
</center>
</td>
</tr>
</table>
<br>
<hr>
<!--Results (Pictures or Youtube link) or Presentation link-->
<center>
<h1>Qualitative Results</h1>
</center><br>
<center>
<span style="font-size:16pt">The model is trained on NYU Depth V2, and evaluated on SUN RGB-D without fine-tuning.</span>
</center>
<h1></h1>
<table align=center height="512px" width="722px">
<!--Video link-->
<tr height="512px" width="722px">
<td valign="top" width="722px" height="512px">
<div class="img-comp-container">
<div class="mySlides">
<div class="img-comp-img ">
<img src="results/depth_7.png" width="722px" height="512px"/>
</div>
<div class="img-comp-img img-comp-overlay">
<img src="results/image_7.jpg" width="722px" height="512px"/>
</div>
</div>
<div class="mySlides">
<div class="img-comp-img ">
<img src="results/depth_0.png" width="722px" height="512px"/>
</div>
<div class="img-comp-img img-comp-overlay">
<img src="results/image_0.jpg" width="722px" height="512px"/>
</div>
</div>
<div class="mySlides">
<div class="img-comp-img ">
<img src="results/depth_6.png" width="722px" height="512px"/>
</div>
<div class="img-comp-img img-comp-overlay">
<img src="results/image_6.jpg" width="722px" height="512px"/>
</div>
</div>
<div class="mySlides">
<div class="img-comp-img ">
<img src="results/depth_2.png" width="722px" height="512px"/>
</div>
<div class="img-comp-img img-comp-overlay">
<img src="results/image_2.jpg" width="722px" height="512px"/>
</div>
</div>
<div class="mySlides">
<div class="img-comp-img ">
<img src="results/depth_4.png" width="722px" height="512px"/>
</div>
<div class="img-comp-img img-comp-overlay">
<img src="results/image_4.jpg" width="722px" height="512px"/>
</div>
</div>
<!-- Next and previous buttons -->
<a class="previous" onclick="plusSlides(-1)">❮</a>
<a class="next" onclick="plusSlides(1)">❯</a>
</div>
<br>
<div style="text-align:center">
<span class="dot" onclick="currentSlide(1)"></span>
<span class="dot" onclick="currentSlide(2)"></span>
<span class="dot" onclick="currentSlide(3)"></span>
<span class="dot" onclick="currentSlide(4)"></span>
<span class="dot" onclick="currentSlide(5)"></span>
</div>
<script>
initComparisons();
</script>
<script>
var slideIndex = 1;
initSlideShow(slideIndex);
currentSlide(slideIndex);
</script>
</td>
</tr>
</table>
<br>
<hr>
<!--Authors-->
<table align=center width=1100px>
<center>
<h1>Authors</h1>
</center>
<tr>
<td>
<div class="author_image"><img style="height:150px" src="./images/authors/ce.jpg"><p>Ce Liu</p></div>
</td>
<td>
<div class="author_image"><img style="height:150px" src="./images/authors/suryansh.jpg"><p>Suryansh Kumar</p></div>
</td>
<td>
<div class="author_image"><img style="height:150px" src="./images/authors/shuhang.jpg"><p>Shuhang Gu</p></div>
</td>
<td>
<div class="author_image"><img style="height:150px" src="./images/authors/radu.jpg"><p>Radu Timofte</p></div>
</td>
<td>
<div class="author_image"><img style="height:150px" src="./images/authors/luc.png">
<p>Luc Van Gool</p></div>
</td>
</tr>
</table>
<hr>
<!--Acknowledgements-->
<table align=center width=1100px>
<center>
<h1>Acknowledgements</h1>
</center>
<tr>
<td>
<p style="text-align: justify;">
This work was partly supported by ETH General Fund (OK), Chinese Scholarship Council (CSC), and The Alexander von Humboldt Foundation.
</p>
</td>
</tr>
</table>
<br><br>
</body>
</html>