-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcleanup_keep_calm_with_covid.py
103 lines (86 loc) · 3.81 KB
/
cleanup_keep_calm_with_covid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import pandas as pd
import numpy as np
from datetime import datetime
from constants import (
VIALINK_REQUIRED_COLUMNS_CALLS,
VIALINK_NEEDS_COLUMNS,
VIALINK_REQUIRED_COLUMNS_DISASTER,
VIALINK_CALLS_KEY,
VIALINK_DISASTER_KEY,
HANGUP_VALUES,
)
from utils import explode_needs, get_lat, get_lng, replacements
CONVERTERS = {
"Concerns/Needs - Disaster Services ": str,
"Concerns/Needs - Domestic Abuse/IPV": str,
"Concerns/Needs - Early Childhood Education ": str,
"Concerns/Needs - Education/ Employment ": str,
"Concerns/Needs - Environmental Quality & Prtcn ": str,
"Concerns/Needs - Health Care ": str,
"Concerns/Needs - Interpersonal": str,
"Concerns/Needs - Mental Health": str,
"Concerns/Needs - Mental Health Concerns": str,
"Concerns/Needs - Organizational Development": str,
"Concerns/Needs - Other ": str,
"Concerns/Needs - Other Community Services": str,
"Concerns/Needs - Protective Service/Abuse": str,
"Concerns/Needs - Public Asst & Social Insurance": str,
"Concerns/Needs - Relationship Concerns / Issues ": str,
"Concerns/Needs - Self-Harm": str,
"Concerns/Needs - Sexuality": str,
}
def cleanup(dfs):
### Cleanup for Keeping Calm with COVID dashboard
# step 1
# select only the required columns
df = dfs[VIALINK_CALLS_KEY][VIALINK_REQUIRED_COLUMNS_CALLS]
# step 2
# remove calls not from LA Spirit line
df = df[df["Call Information - Program"].str.contains("LA Spirit")]
# step 3
# combine all needs column into 1 column
all_needs = "Concerns/Needs - Concerns/Needs"
df[all_needs] = df[VIALINK_NEEDS_COLUMNS].apply(lambda x: "; ".join(x[x.notnull()]), axis=1)
df = explode_needs(df, all_needs)
# step 4
# add "Data From" column
df["Data From"] = "VIA LINK"
# step 5
# cleanup Concerns/Needs Data
df[all_needs] = df[all_needs].str.strip()
df.replace(to_replace=replacements, value=None, inplace=True)
# step 6
# drop all the original needs columns
df.drop(columns=VIALINK_NEEDS_COLUMNS, inplace=True)
# use the same process from the all covid calls dashboard
df_disaster = dfs[VIALINK_DISASTER_KEY][VIALINK_REQUIRED_COLUMNS_DISASTER]
# only include LA Spirit Crisis calls
df_disaster = df_disaster[
df_disaster["Contact Source - Program "].str.contains("LA Spirit")
]
# cleanup invalid values
df_disaster["Contact Source - Program "].replace(
to_replace=datetime(2001, 2, 1, 0, 0), value=np.nan, inplace=True
)
df_disaster["Data From"] = "VIA LINK"
master_df = pd.concat([df, df_disaster], join="outer", ignore_index=True)
# add lat/lon columns
master_df["Latitude"] = master_df["PostalCode"].apply(get_lat)
master_df["Longitude"] = master_df["PostalCode"].apply(get_lng)
# first put the values from "Needs - Basic Needs Requested" into "Concerns/Needs - Concerns/Needs"
cn = "Concerns/Needs - Concerns/Needs"
master_df["all_needs"] = master_df[[cn, "Needs - Basic Needs Requested"]].apply(
lambda x: "; ".join(x[x.notnull()]), axis=1
)
master_df.drop(columns=[cn, "Needs - Basic Needs Requested"], inplace=True)
master_df.rename(columns={"all_needs": cn}, inplace=True)
master_df = explode_needs(master_df, cn)
# cleanup Concerns/Needs
master_df[cn] = master_df[cn].str.strip()
master_df.replace(to_replace=replacements, value=None, inplace=True)
# remove hangups
master_df = master_df[~master_df[cn].isin(HANGUP_VALUES)]
master_df = master_df[~master_df["Call Information - Counseling agency MHC BHC etc. "].isin(HANGUP_VALUES)]
master_df = master_df[~master_df["Call Information - Mental Health Region"].isin(HANGUP_VALUES)]
master_df = master_df[~master_df["Call Information - Contact Type"].isin(HANGUP_VALUES)]
return master_df