forked from kentsommer/pytorch-value-iteration-networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
151 lines (142 loc) · 5.26 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import time
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from dataset.dataset import *
from utility.utils import *
from model import *
def train(net, trainloader, config, criterion, optimizer, use_GPU):
print_header()
for epoch in range(config.epochs): # Loop over dataset multiple times
avg_error, avg_loss, num_batches = 0.0, 0.0, 0.0
start_time = time.time()
for i, data in enumerate(trainloader): # Loop over batches of data
# Get input batch
X, S1, S2, labels = data
if X.size()[0] != config.batch_size:
continue # Drop those data, if not enough for a batch
# Send Tensors to GPU if available
if use_GPU:
X = X.cuda()
S1 = S1.cuda()
S2 = S2.cuda()
labels = labels.cuda()
# Wrap to autograd.Variable
X, S1 = Variable(X), Variable(S1)
S2, labels = Variable(S2), Variable(labels)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward pass
outputs, predictions = net(X, S1, S2, config)
# Loss
loss = criterion(outputs, labels)
# Backward pass
loss.backward()
# Update params
optimizer.step()
# Calculate Loss and Error
loss_batch, error_batch = get_stats(loss, predictions, labels)
avg_loss += loss_batch
avg_error += error_batch
num_batches += 1
time_duration = time.time() - start_time
# Print epoch logs
print_stats(epoch, avg_loss, avg_error, num_batches, time_duration)
print('\nFinished training. \n')
def test(net, testloader, config):
total, correct = 0.0, 0.0
for i, data in enumerate(testloader):
# Get inputs
X, S1, S2, labels = data
if X.size()[0] != config.batch_size:
continue # Drop those data, if not enough for a batch
# Send Tensors to GPU if available
if use_GPU:
X = X.cuda()
S1 = S1.cuda()
S2 = S2.cuda()
labels = labels.cuda()
# Wrap to autograd.Variable
X, S1, S2 = Variable(X), Variable(S1), Variable(S2)
# Forward pass
outputs, predictions = net(X, S1, S2, config)
# Select actions with max scores(logits)
_, predicted = torch.max(outputs, dim=1, keepdim=True)
# Unwrap autograd.Variable to Tensor
predicted = predicted.data
# Compute test accuracy
correct += (torch.eq(torch.squeeze(predicted), labels)).sum()
total += labels.size()[0]
print('Test Accuracy: {:.2f}%'.format(100 * (correct / total)))
if __name__ == '__main__':
# Automatic swith of GPU mode if available
use_GPU = torch.cuda.is_available()
# Parsing training parameters
parser = argparse.ArgumentParser()
parser.add_argument(
'--datafile',
type=str,
default='dataset/gridworld_8x8.npz',
help='Path to data file')
parser.add_argument('--imsize', type=int, default=8, help='Size of image')
parser.add_argument(
'--lr',
type=float,
default=0.005,
help='Learning rate, [0.01, 0.005, 0.002, 0.001]')
parser.add_argument(
'--epochs', type=int, default=30, help='Number of epochs to train')
parser.add_argument(
'--k', type=int, default=10, help='Number of Value Iterations')
parser.add_argument(
'--l_i', type=int, default=2, help='Number of channels in input layer')
parser.add_argument(
'--l_h',
type=int,
default=150,
help='Number of channels in first hidden layer')
parser.add_argument(
'--l_q',
type=int,
default=10,
help='Number of channels in q layer (~actions) in VI-module')
parser.add_argument(
'--batch_size', type=int, default=128, help='Batch size')
config = parser.parse_args()
# Get path to save trained model
save_path = "trained/vin_{0}x{0}.pth".format(config.imsize)
# Instantiate a VIN model
net = VIN(config)
# Use GPU if available
if use_GPU:
net = net.cuda()
# Loss
criterion = nn.CrossEntropyLoss()
# Optimizer
optimizer = optim.RMSprop(net.parameters(), lr=config.lr, eps=1e-6)
# Dataset transformer: torchvision.transforms
transform = None
# Define Dataset
trainset = GridworldData(
config.datafile, imsize=config.imsize, train=True, transform=transform)
testset = GridworldData(
config.datafile,
imsize=config.imsize,
train=False,
transform=transform)
# Create Dataloader
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=config.batch_size, shuffle=True, num_workers=0)
testloader = torch.utils.data.DataLoader(
testset, batch_size=config.batch_size, shuffle=False, num_workers=0)
# Train the model
train(net, trainloader, config, criterion, optimizer, use_GPU)
# Test accuracy
test(net, testloader, config)
# Save the trained model parameters
torch.save(net.state_dict(), save_path)