-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfacialkeypointsdetection.py
58 lines (41 loc) · 1.52 KB
/
facialkeypointsdetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# -*- coding: utf-8 -*-
"""FacialKeypointsDetection.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1m2uaffjRBIC3WlkaK7hVEW6vw3EgRTN1
"""
import os
import cv2
import numpy as np
from tensorflow.keras.models import load_model
model = load_model('model/facialKeyPointsDetection.h5')
# haarcascade_frontalface for face detecting
haarcascade_path = "assets/haarcascade_frontalface_default.xml"
face_cascade = cv2.CascadeClassifier(haarcascade_path)
image = cv2.imread('assets/people_with_phones.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.3,
minNeighbors=3,
minSize=(30,30)
)
print(f"found {len(faces)} faces.")
for (x, y, w, h) in faces:
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 0, 255), 2)
roi_color = image[y:y+h, x:x+w]
roi_gray = cv2.cvtColor(roi_color, cv2.COLOR_BGR2GRAY)
resized_image = cv2.resize(roi_gray, (96, 96))
img_model = np.reshape(resized_image, (1, 96, 96, 1))
keypoints = model.predict(img_model)
keypoints = np.reshape(keypoints, 30)
x_coords = []
y_coords = []
for i in range(len(keypoints)):
if i % 2 == 0:
x_coords.append(keypoints[i])
else:
y_coords.append(keypoints[i])
for i in range(len(x_coords)): # Plot the keypoints at the x and y coordinates
cv2.circle(resized_image, (x_coords[i], y_coords[i]), 2, (255,255,0), -1)
cv2.imshow(resized_image)