-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmovavgs.py
38 lines (33 loc) · 1.08 KB
/
movavgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import numpy as np
import matplotlib.pyplot as plt
def sma(data,w_size):
n=data.size # Assumes data is numpy array
smaval = np.zeros(n)
gain = 1/w_size
for i in range(n):
if i<w_size:
smaval[i] = data[0:i+1].mean()
else:
smaval[i] = smaval[i-1] + gain*(data[i] - smaval[i-w_size+1])
return smaval
def recursive_moving_avg(meas,gain,prior_est,oldest_meas):
avg = prior_est + gain*(meas-oldest_meas)
return avg
def tme_plot(plotnum,truth_data, meas_data=None,
est_data=None, ylabel='y', title='',
sigma=1.0):
plt.figure(plotnum)
plt.plot(truth_data,'.-b')
legend = []
legend.append('Truth')
if type(meas_data)!=type(None):
plt.plot(meas_data,'.r')
legend.append('Measurements ($\sigma$='+str(sigma)+')')
if type(est_data)!=type(None):
plt.plot(est_data,'+:k')
legend.append('Estimates')
plt.xlabel('Time (Epochs)')
plt.ylabel(ylabel)
plt.legend(legend,loc='lower left')
plt.title(title)
plt.show()