-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualise_results.py
1214 lines (1038 loc) · 47.7 KB
/
visualise_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# https://stackoverflow.com/a/2429517/
# Create list of parameter names to aid with transforming results from PyMC/arviz
fraction_parameter_names = (
["frac"]
+ [f"frac_vill_{group}" for group in village_IDs]
+ [f"frac_vill_{group}_{sex}" for group in village_IDs for sex in ["female", "male"]]
)
concentration_parameter_names = (
["conc"]
+ [f"conc_vill_{group}" for group in village_IDs]
+ [f"conc_vill_{group}_{sex}" for group in village_IDs for sex in ["female", "male"]]
)
all_parameter_names = (
["hyper_alpha"]
+ ["hyper_lambda"]
+ ["frac"]
+ [f"frac_vill_{group}" for group in village_IDs]
+ ["conc"]
+ [f"conc_vill_{group}" for group in village_IDs]
)
parameter_categories = types_of_lender + ["common"]
model_names = ["Baseline", "Extended", "Sex (Female)", "Sex (Male)", "Sex (Common)"]
# Define various helper functions to aid with transforming results from PyMC/arviz
def pymc_trace_xarray_to_pandas(
inference_data, *,
samples: bool = True,
villages_names: list[str] = village_IDs,
villagers_names: list[str] = all_villager_nominations.index,
conc_parm_names: list[str] = concentration_parameter_names) -> pd.DataFrame:
"""
Extracts MCMC samples from a PyMC posterior (xarray dataset) and converts
to a Pandas data frame + a bit of processing to prepare for plotting.
Function assume that arviz has been imported as "az" and xarray as "xarray".
Furthermore, an InferenceData object (returned from pymc.sample) or posterior
predictions (returned from pymc.sample_posterior_predictive) are required.
"""
# https://switowski.com/blog/checking-for-true-or-false/
if samples:
posterior_samples = getattr(
inference_data, "posterior",
"inference_data is not an arviz or xarray object with posterior samples!"
)
if isinstance(posterior_samples, az.data.inference_data.InferenceData):
posterior_samples = posterior_samples["posterior"]
posterior_samples = posterior_samples.to_dataframe()
posterior_samples = posterior_samples.reset_index(drop = False)
posterior_samples = posterior_samples.melt(
id_vars = ["chain", "draw", "axis_zero", "categories"],
var_name = "parameter",
value_name = "sampled_estimate"
)
# Estimated fraction parameters are multidimensional (i.e., one
# per modelled category) and village-specific. However, the concentration
# parameters are only village-specific and common across the categories.
# Accordingly, we need to filter out the duplicate entries for the
# concentration parameters. To do this, the values in the "parameter"
# column — i.e., the name of the category that each concentration factor
# belongs to — with "common" as the estimates are the same across categories.
# Below, "duplicated(keep = "first")" means that the first-encountered
# row of the duplicate rows is marked "False", where the duplicates
# that follow are marked as "True".
posterior_samples.loc[posterior_samples["parameter"].isin(conc_parm_names), ["categories"]] = "common"
posterior_samples = posterior_samples[~posterior_samples.duplicated(keep = "first")]
del posterior_samples["axis_zero"]
return posterior_samples
elif isinstance(posterior_samples, xarray.core.dataset.Dataset):
posterior_samples = posterior_samples.to_dataframe()
posterior_samples = posterior_samples.reset_index(drop = False)
posterior_samples = posterior_samples.melt(
id_vars = ["chain", "draw", "axis_zero", "categories"],
var_name = "parameter",
value_name = "sampled_estimate"
)
posterior_samples.loc[posterior_samples["parameter"].isin(conc_parm_names), ["categories"]] = "common"
posterior_samples = posterior_samples[~posterior_samples.duplicated(keep = "first")]
del posterior_samples["axis_zero"]
return posterior_samples
else:
print(posterior_samples)
else:
posterior_predictions = getattr(
inference_data, "posterior_predictive",
"inference_data is not an arviz or xarray object with posterior predictions!"
)
if isinstance(posterior_predictions, az.data.inference_data.InferenceData):
# No need to melt as "posterior_predictive" only concerns the response Y
posterior_predictions = posterior_predictions["posterior_predictive"]
posterior_predictions = posterior_predictions.to_dataframe()
posterior_predictions = posterior_predictions.reset_index(drop = False)
# Convert "categories" to pd.Categorical for faster pivoting below.
# https://stackoverflow.com/a/55405384
posterior_predictions["categories"] = pd.Categorical(
posterior_predictions["categories"], categories = [
"friend_lender_ij",
"family_lender_ij",
"friend_family_lender_ij",
"stranger_lender_ij",
"friend_lender_ij_lender_ji",
"family_lender_ij_lender_ji",
"friend_family_lender_ij_lender_ji",
"lender_ij_lender_ji"
], ordered = False
)
posterior_predictions["villagers"] = pd.Categorical(
posterior_predictions["villagers"],
categories = villagers_names,
ordered = False
)
# Widen the dataframe by creating columns for
# the posterior predictions for each category
posterior_predictions = posterior_predictions.pivot(
index = ["chain", "draw", "villagers"],
columns = ["categories"],
values = ["Y_counts"]
)
posterior_predictions = posterior_predictions.reset_index(drop = False)
# Pivot + reset_index results in a multi-index that should be flattened.
posterior_predictions.columns = [
" ".join(column).strip().replace(" ", "_")
for column in posterior_predictions.columns.to_flat_index()
]
return posterior_predictions
elif isinstance(posterior_predictions, xarray.core.dataset.Dataset):
posterior_predictions = posterior_predictions.to_dataframe()
posterior_predictions = posterior_predictions.reset_index(drop = False)
posterior_predictions["categories"] = pd.Categorical(
posterior_predictions["categories"], categories = [
"friend_lender_ij",
"family_lender_ij",
"friend_family_lender_ij",
"stranger_lender_ij",
"friend_lender_ij_lender_ji",
"family_lender_ij_lender_ji",
"friend_family_lender_ij_lender_ji",
"lender_ij_lender_ji"
], ordered = False
)
posterior_predictions["villagers"] = pd.Categorical(
posterior_predictions["villagers"],
categories = villagers_names,
ordered = False
)
posterior_predictions = posterior_predictions.pivot(
index = ["chain", "draw", "villagers"],
columns = ["categories"],
values = ["Y_counts"]
)
posterior_predictions = posterior_predictions.reset_index(drop = False)
posterior_predictions.columns = [
" ".join(column).strip().replace(" ", "_")
for column in posterior_predictions.columns.to_flat_index()
]
return posterior_predictions
else:
print(posterior_predictions)
def pymc_hdi_xarray_to_pandas(
inference_data, *,
preferred_prob: float = 0.95,
villages_names: list[str] = village_IDs,
response_categories: list[str] = types_of_lender,
conc_parm_names: list[str] = concentration_parameter_names) -> pd.DataFrame:
"""
Takes an arviz.data.inference_data.InferenceData object returned from
pymc.sample, calculates highest density credible intervals (HDIs) using
one's preferred probability and then converts to a Pandas data frame with
a bit of processing to prepare for plotting.
Function assumes that arviz has been imported as "az". For details on az.hdi,
see: https://python.arviz.org/en/stable/api/generated/arviz.hdi.html
"""
if isinstance(inference_data, az.data.inference_data.InferenceData):
hd_intervals = az.hdi(
inference_data,
hdi_prob = preferred_prob,
group = "posterior"
)
hd_intervals = hd_intervals.to_dataframe()
hd_intervals = hd_intervals.reset_index(drop = False)
hd_intervals = hd_intervals.melt(
id_vars = ["axis_zero", "categories", "hdi"],
var_name = "parameter",
value_name = "hdi_boundary"
)
# Widen dataframe by creating columns for credible
# intervals for each parameter in each category.
hd_intervals = hd_intervals.pivot(
index = ["axis_zero", "categories", "parameter"],
columns = ["hdi"],
values = ["hdi_boundary"]
)
hd_intervals = hd_intervals.reset_index(drop = False)
# Pivot + reset_index results in a multi-index that should be flattened.
hd_intervals.columns = [
" ".join(column).strip().replace(" ", "_")
for column in hd_intervals.columns.to_flat_index()
]
# Estimated fraction parameters are multidimensional (i.e., one
# per modelled category) and village-specific. However, the concentration
# parameters are only village-specific and common across the categories.
# Accordingly, we need to filter out the duplicate entries for the
# concentration parameters. To do this, the values in the "parameter"
# column — i.e., the name of the category that each concentration factor
# belongs to — with "common" as the estimates are the same across categories.
hd_intervals.loc[hd_intervals["parameter"].isin(conc_parm_names), ["categories"]] = "common"
hd_intervals = hd_intervals[~hd_intervals.duplicated(keep = "first")]
# https://stackoverflow.com/a/52825733
hd_intervals.loc[:, ["categories"]] = pd.Categorical(
hd_intervals["categories"],
categories = (response_categories + ["common"]),
ordered = True
)
hd_intervals = hd_intervals.sort_values("categories")
hd_intervals = hd_intervals.reset_index(drop = True)
del hd_intervals["axis_zero"]
return hd_intervals
else:
print("inference_data is not an arviz object with posterior samples!")
def make_posterior_means(
inference_data, *,
preferred_prob: float = 0.95,
demographic_params: bool = False,
villages_names: list[str] = village_IDs,
conc_parm_names: list[str] = concentration_parameter_names) -> pd.DataFrame:
"""
Takes an arviz.data.inference_data.InferenceData object returned from
pymc.sample and calculates the posterior mean for each parameter using
the posterior samples.
"""
if isinstance(inference_data, az.data.inference_data.InferenceData):
# Transform posterior samples and calculate posterior mean across chains.
posterior_means = pymc_trace_xarray_to_pandas(
inference_data,
samples = True,
villages_names = villages_names,
conc_parm_names = conc_parm_names
)
posterior_means = posterior_means.groupby(
by = ["categories", "parameter"]
).mean(numeric_only = True)
posterior_means = posterior_means.reset_index(drop = False)
posterior_means.drop(columns = ["chain", "draw"], inplace = True)
# Join posterior means to dataframe containing highest density intervals.
posterior_means = pd.merge(
how = "left",
left = pymc_hdi_xarray_to_pandas(
inference_data,
preferred_prob = preferred_prob,
villages_names = villages_names
),
right = posterior_means,
left_on = ["categories", "parameter"],
right_on = ["categories", "parameter"],
suffixes = ("_hdi", "_means"),
indicator = False
)
posterior_means = posterior_means.rename(
columns = {
"hdi_boundary_higher": "higher_bound",
"hdi_boundary_lower": "lower_bound",
"sampled_estimate": "pmean"
}
)
if demographic_params:
# Create a flag for whether or not a parameter is
# specific to males or females.
posterior_means["sex"] = np.nan
posterior_means.loc[posterior_means["parameter"].str.contains("male"), ["sex"]] = "Male"
posterior_means.loc[posterior_means["parameter"].str.contains("female"), ["sex"]] = "Female"
posterior_means.loc[:, ["parameter"]] = (
posterior_means["parameter"].str.replace("_female", "").str.replace("_male", "")
)
return posterior_means
else:
return posterior_means
else:
print("inference_data is not an arviz object with posterior samples!")
def prepare_pymc_trace_for_ppc(
inference_data, *,
model_data = all_villager_nominations,
villages_names: list[str] = village_IDs,
response_categories: list[str] = types_of_lender,
conc_parm_names: list[str] = concentration_parameter_names) -> pd.DataFrame:
if isinstance(inference_data, az.data.inference_data.InferenceData):
model_ppc = pymc_trace_xarray_to_pandas(
inference_data,
samples = False,
villages_names = villages_names,
conc_parm_names = conc_parm_names
)
# Unique id for each draw from the posterior predictive distribution.
# This is slow, and it may perhaps be speed up using pd.eval()?
# https://jakevdp.github.io/PythonDataScienceHandbook/03.12-performance-eval-and-query.html
model_ppc.loc[:, ["chain_draw"]] = (
model_ppc["chain"].astype("string") + "_" + model_ppc["draw"].astype("string")
)
# Recall that the response variable for this analysis is an N x K matrix
# wherein each row is a compositional vector of counts indicating the
# number of each of the K types of lenders that each of the N villagers
# name as a source of money. Keeping this in mind, I compare the
# frequency that various counts appear in the response variable.
# Specifically, for each draw from the posterior (i.e., an N x K Matrix),
# calculate the number of times that counts for a given type of lender
# appear. Note, villagers could only name up to five lenders.
# Thus, counts for each type of lender will never be greater than five.
# Finally, as the response variable is a matrix/multivariate, tallies of
# the counts must be performed for each of the K types of lender.
model_ppc = pd.concat(
objs = [
# To try to clean up this ugly method chaining, parentheses "()"
# are used to create an "atom" wherein various methods are used
# to transform the result from pd.crosstab before concatenation.
(pd.crosstab(
index = model_ppc["chain_draw"],
columns = model_ppc["Y_counts_friend_lender_ij"]
)
.describe().loc[["mean","std"], :]
.T # Transpose for concatenation along the row axis
.reset_index(drop = False)
.assign(categories = "Y_counts_friend_lender_ij")
.rename(columns = {
"Y_counts_friend_lender_ij": "number_of_lenders",
"mean": "Y_count_ppc_mean", "std": "Y_count_ppc_std"
}
)
),
(pd.crosstab(
index = model_ppc["chain_draw"],
columns = model_ppc["Y_counts_family_lender_ij"]
)
.describe().loc[["mean","std"], :]
.T
.reset_index(drop = False)
.assign(categories = "Y_counts_family_lender_ij")
.rename(columns = {
"Y_counts_family_lender_ij": "number_of_lenders",
"mean": "Y_count_ppc_mean", "std": "Y_count_ppc_std"
}
)
),
(pd.crosstab(
index = model_ppc["chain_draw"],
columns = model_ppc["Y_counts_friend_family_lender_ij"]
)
.describe().loc[["mean","std"], :]
.T
.reset_index(drop = False)
.assign(categories = "Y_counts_friend_family_lender_ij")
.rename(columns = {
"Y_counts_friend_family_lender_ij": "number_of_lenders",
"mean": "Y_count_ppc_mean", "std": "Y_count_ppc_std"
}
)
),
(pd.crosstab(
index = model_ppc["chain_draw"],
columns = model_ppc["Y_counts_stranger_lender_ij"]
)
.describe().loc[["mean","std"], :]
.T
.reset_index(drop = False)
.assign(categories = "Y_counts_stranger_lender_ij")
.rename(columns = {
"Y_counts_stranger_lender_ij": "number_of_lenders",
"mean": "Y_count_ppc_mean", "std": "Y_count_ppc_std"
}
)
),
(pd.crosstab(
index = model_ppc["chain_draw"],
columns = model_ppc["Y_counts_friend_lender_ij_lender_ji"]
)
.describe().loc[["mean","std"], :]
.T
.reset_index(drop = False)
.assign(categories = "Y_counts_friend_lender_ij_lender_ji")
.rename(columns = {
"Y_counts_friend_lender_ij_lender_ji": "number_of_lenders",
"mean": "Y_count_ppc_mean", "std": "Y_count_ppc_std"
}
)
),
(pd.crosstab(
index = model_ppc["chain_draw"],
columns = model_ppc["Y_counts_family_lender_ij_lender_ji"]
)
.describe().loc[["mean","std"], :]
.T
.reset_index(drop = False)
.assign(categories = "Y_counts_family_lender_ij_lender_ji")
.rename(columns = {
"Y_counts_family_lender_ij_lender_ji": "number_of_lenders",
"mean": "Y_count_ppc_mean", "std": "Y_count_ppc_std"
}
)
),
(pd.crosstab(
index = model_ppc["chain_draw"],
columns = model_ppc["Y_counts_friend_family_lender_ij_lender_ji"]
)
.describe().loc[["mean","std"], :]
.T
.reset_index(drop = False)
.assign(categories = "Y_counts_friend_family_lender_ij_lender_ji")
.rename(columns = {
"Y_counts_friend_family_lender_ij_lender_ji": "number_of_lenders",
"mean": "Y_count_ppc_mean", "std": "Y_count_ppc_std"
}
)
),
(pd.crosstab(
index = model_ppc["chain_draw"],
columns = model_ppc["Y_counts_lender_ij_lender_ji"]
)
.describe().loc[["mean","std"], :]
.T
.reset_index(drop = False)
.assign(categories = "Y_counts_lender_ij_lender_ji")
.rename(columns = {
"Y_counts_lender_ij_lender_ji": "number_of_lenders",
"mean": "Y_count_ppc_mean", "std": "Y_count_ppc_std"
}
)
),
],
join = "outer",
axis = 0,
verify_integrity = False,
sort = False
)
# Calculate the number of times that counts for a given
# type of lender appear in the *observed* data
Y_observed_counts = model_data[types_of_lender]
Y_observed_counts.columns = [
f"Y_counts_{column}" for column in Y_observed_counts.columns
]
Y_observed_counts = Y_observed_counts.apply(
axis = 0, func = lambda col: col.value_counts()).fillna(0)
Y_observed_counts = Y_observed_counts.unstack()
Y_observed_counts = Y_observed_counts.reset_index(drop = False)
Y_observed_counts = Y_observed_counts.rename(
columns = {
"level_0": "categories",
"level_1": "number_of_lenders",
0: "Y_observed_count"
}
)
# Join mean number of times that counts for a given type of leader
# across posterior predictions to data frame containing the number of
# times that counts of each type of lender appear in the observed data.
model_ppc = pd.merge(
how = "left",
left = Y_observed_counts,
right = model_ppc,
left_on = ["number_of_lenders", "categories"],
right_on = ["number_of_lenders", "categories"],
suffixes = ("_observed", "_ppc"),
indicator = False
)
return model_ppc
else:
print("inference_data is not an arviz object with posterior samples!")
# Figure 1 — Posterior Mean Proportions
# First, derive the Pandas dataframe to pass to ggplot for plotting.
baseline_model_pmean = make_posterior_means(
inference_data = baseline_model.trace,
demographic_params = False
)
baseline_model_pmean["model"] = "Baseline"
baseline_model_pmean["sex"] = np.nan
extended_model_pmean = make_posterior_means(
inference_data = extended_model.trace,
demographic_params = False
)
extended_model_pmean["model"] = "Extended"
extended_model_pmean["sex"] = np.nan
sex_model_pmean = make_posterior_means(
inference_data = sex_model.trace,
demographic_params = True
)
sex_model_pmean["model"] = "Sex (Common)" # For params. that are not sex-specific.
sex_model_pmean.loc[sex_model_pmean["sex"] == "Female", ["model"]] = "Sex (Female)"
sex_model_pmean.loc[sex_model_pmean["sex"] == "Male", ["model"]] = "Sex (Male)"
# Second, join the model-specific dataframes of posterior means.
model_pmeans = pd.concat(
objs = [baseline_model_pmean, extended_model_pmean, sex_model_pmean],
join = "outer",
axis = 0,
verify_integrity = False,
sort = False
)
# Third, create ordered string variables for pretty plotting of results.
# https://plotnine.readthedocs.io/en/stable/tutorials/miscellaneous-order-plot-series.html
model_pmeans["categories"] = pd.Categorical(
model_pmeans["categories"],
categories = parameter_categories,
ordered = True
)
model_pmeans["model"] = pd.Categorical(
model_pmeans["model"],
categories = model_names,
ordered = True
)
model_pmeans["parameter"] = pd.Categorical(
model_pmeans["parameter"],
categories = all_parameter_names,
ordered = True
)
# Fourth, create unique string IDs for each parameter to make parallel coordinate
# plot wherein posterior mean proportions are tied across the lender categories.
model_pmeans = model_pmeans.reset_index(drop = True)
model_pmeans["estimate_ID"] = (
model_pmeans["parameter"].astype("string") + "_" + model_pmeans["model"].astype("string")
)
# Fourth, create Figure 1
figure_1_para_coord = (
p9.ggplot(
data = model_pmeans[model_pmeans["parameter"].isin(fraction_parameter_names)]
)
+ p9.aes(
x = "categories", y = "pmean", group = "estimate_ID",
ymin = "lower_bound", ymax = "higher_bound",
colour = "model", alpha = "model", size = "model"
)
+ p9.geom_linerange(
size = 0.25,
linetype = "solid",
colour = "#1E1E1E",
show_legend = False
)
+ p9.geom_line(
linetype = "solid",
show_legend = False
)
+ p9.geom_point(
size = 1.75,
show_legend = True
)
+ p9.labs(
x = "\nType of Lender\n",
y = "Posterior Mean Proportion $\pi_{g, k}$ + 95% Highest Density Interval (Square-Root Scale)\n"
)
+ p9.scale_x_discrete(
breaks = [
"friend_lender_ij",
"family_lender_ij",
"friend_family_lender_ij",
"stranger_lender_ij",
"friend_lender_ij_lender_ji",
"family_lender_ij_lender_ji",
"friend_family_lender_ij_lender_ji",
"lender_ij_lender_ji"
],
labels = [
"Best Friend\n(Non-indebted)",
"Salient Kin\n(Non-indebted)",
"B. Friend + S. Kin\n(Non-indebted)",
"Not B. Friend or S. Kin\n(Non-indebted)",
"Best Friend\n(Indebted)",
"Salient Kin\n(Indebted)",
"B. Friend + S. Kin\n(Indebted)",
"Not B. Friend or S. Kin\n(Indebted)"
]
)
# + p9.facet_wrap(
# "model",
# ncol = 1,
# dir = "v"
# )
+ p9.scale_y_sqrt(
limits = [0, 0.6],
breaks = [0, 0.03, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
)
# https://jtools.jacob-long.com/reference/jtools_colors.html
# https://personal.sron.nl/~pault/
+ p9.scale_colour_manual(
name = "Model",
drop = True,
values = ["#CC3311", "#EE7733", "#0077BB", "#EECC66"],
limits = ["Baseline", "Extended", "Sex (Female)", "Sex (Male)"],
breaks = ["Baseline", "Extended", "Sex (Female)", "Sex (Male)"],
labels = [
"Baseline Model", "Extended Model",
"Sex-Specic Model (Female)", "Sex-Specic Model (Male)"
]
)
+ p9.scale_alpha_manual(
name = "Model",
drop = True,
values = [1, 0.55, 0.55, 0.55],
limits = ["Baseline", "Extended", "Sex (Female)", "Sex (Male)"],
breaks = ["Baseline", "Extended", "Sex (Female)", "Sex (Male)"],
labels = [
"Baseline Model", "Extended Model",
"Sex-Specic Model (Female)", "Sex-Specic Model (Male)"
]
)
+ p9.scale_size_manual(
name = "Model",
drop = True,
values = [1, 0.2, 0.2, 0.2],
limits = ["Baseline", "Extended", "Sex (Female)", "Sex (Male)"],
breaks = ["Baseline", "Extended", "Sex (Female)", "Sex (Male)"],
labels = [
"Baseline Model", "Extended Model",
"Sex-Specic Model (Female)", "Sex-Specic Model (Male)"
]
)
+ p9.theme(
axis_line_x = p9.element_blank(),
axis_line_y = p9.element_blank(),
plot_background = p9.element_blank(),
strip_background = p9.element_blank(),
legend_position = "bottom",
legend_box_spacing = 0.5, # inches
legend_background = p9.element_blank(),
legend_box_background = p9.element_blank(),
legend_key = p9.element_blank(),
legend_key_size = 34,
legend_entry_spacing = 17,
panel_background = p9.element_blank(),
panel_border = p9.element_blank(),
panel_grid_major_x = p9.element_blank(),
panel_grid_minor_x = p9.element_blank(),
panel_grid_major_y = p9.element_line(size = 0.25, linetype = "solid", colour = "#767676"),
panel_grid_minor_y = p9.element_blank(),
panel_spacing_x = 0.25,
panel_spacing_y = 0.35,
axis_ticks_major_x = p9.element_line(size = 0.75, linetype = "solid", colour = "#767676"),
axis_ticks_minor_x = p9.element_blank(),
axis_ticks_major_y = p9.element_blank(),
axis_ticks_minor_y = p9.element_blank(),
axis_ticks_direction_x = "out",
axis_ticks_direction_y = "out",
axis_text_x = p9.element_text(family = "sans-serif", style = "normal", size = 10, colour = "#767676"),
axis_text_y = p9.element_text(family = "sans-serif", style = "normal", size = 10, colour = "#767676"),
axis_title_x = p9.element_text(family = "sans-serif", style = "normal", size = 10, colour = "#767676", linespacing = 1),
axis_title_y = p9.element_text(family = "sans-serif", style = "normal", size = 10, colour = "#767676", linespacing = 1),
legend_title = p9.element_blank(),
legend_text = p9.element_text(family = "sans-serif", style = "normal", size = 10, colour = "#767676"),
plot_title = p9.element_text(family = "sans-serif", style = "normal", size = 10, colour = "#767676"),
strip_text = p9.element_text(family = "sans-serif", style = "normal", size = 10, colour = "#767676"),
figure_size = (16, 10) # Inches
)
# This (esoteric) line is used to control how the legend looks, where legend
# aesthetics are typically handled by the various calls to scale_FEATURE_manual.
+ p9.guides(colour = p9.guide_legend(override_aes = dict(alpha = 1, size = 4)))
)
figure_1_para_coord.save(
filename = "F1_Proportions_Lender_Types_Parallel_Coordinates.svg",
format = "svg",
dpi = 900, width = 16, height = 10, units = "in",
limitsize = False
)
# Figure 2 — Posterior Predictive Checks
# First, derive the Pandas dataframe to pass to ggplot for plotting.
# TODO: The calls to prepare_pymc_trace_for_ppc() are *VERY* slow (approx 10 min runtime). How to speed up?
# TODO: Perhaps this is one way to speed things up with groupby: https://stackoverflow.com/a/53148084
baseline_model_ppc = prepare_pymc_trace_for_ppc(inference_data = baseline_model.trace)
baseline_model_ppc["model"] = "Baseline"
extended_model_ppc = prepare_pymc_trace_for_ppc(inference_data = extended_model.trace)
extended_model_ppc["model"] = "Extended"
sex_model_ppc = prepare_pymc_trace_for_ppc(inference_data = sex_model.trace)
sex_model_ppc["model"] = "Sex" # For params. that are not sex-specific.
# Second, join model-specific dataframes of summaries of posterior predictive samples.
model_ppc = pd.concat(
objs = [baseline_model_ppc, extended_model_ppc, sex_model_ppc],
join = "outer",
axis = 0,
verify_integrity = False,
sort = False
)
model_ppc = model_ppc.astype(
dtype = {
"categories": "string",
"number_of_lenders": "int64",
"Y_observed_count": "int64",
"Y_count_ppc_mean": "float64",
"Y_count_ppc_std": "float64",
"model": "string"
}
)
# Third, create ordered string variable for pretty plotting of results.
model_ppc["categories"] = pd.Categorical(model_ppc["categories"], categories = [
"Y_counts_friend_lender_ij",
"Y_counts_family_lender_ij",
"Y_counts_friend_family_lender_ij",
"Y_counts_stranger_lender_ij",
"Y_counts_friend_lender_ij_lender_ji",
"Y_counts_family_lender_ij_lender_ji",
"Y_counts_friend_family_lender_ij_lender_ji",
"Y_counts_lender_ij_lender_ji"
], ordered = True
)
model_ppc["Y_count_ppc_upper"] = model_ppc["Y_count_ppc_mean"] + (1.96 * model_ppc["Y_count_ppc_std"])
model_ppc["Y_count_ppc_lower"] = model_ppc["Y_count_ppc_mean"] - (1.96 * model_ppc["Y_count_ppc_std"])
# Fourth, create Figure 3
figure_2_ppc = (
p9.ggplot(
data = model_ppc
)
+ p9.aes(
x = "number_of_lenders", y = "Y_count_ppc_mean", colour = "model",
ymin = "Y_count_ppc_lower", ymax = "Y_count_ppc_upper"
)
+ p9.geom_ribbon(
colour = "#767676",
alpha = 0.15,
linetype = "None",
show_legend = False
)
+ p9.geom_point(
mapping = p9.aes(
x = "number_of_lenders",
y = "Y_observed_count"
),
colour = "#767676",
size = 1.50,
alpha = 0.75,
inherit_aes = False,
show_legend = False
)
+ p9.geom_hline(
yintercept = [0, 10, 100, 1000],
linetype = "solid",
alpha = 0.5, size = 0.15,
colour = "#767676"
)
+ p9.geom_line(
mapping = p9.aes(
x = "number_of_lenders",
y = "Y_observed_count"
),
colour = "#767676",
size = 0.25,
linetype = "dashed",
inherit_aes = False,
show_legend = False
)
+ p9.geom_point(
size = 1.50,
alpha = 0.75,
show_legend = False
)
+ p9.geom_line(
size = 0.25,
alpha = 0.75,
linetype = "solid",
show_legend = False
)
+ p9.scale_x_continuous(breaks = [0, 1, 2, 3, 4, 5])
+ p9.scale_y_continuous(
breaks = [0, 10, 100, 1000, 3000],
limits = [-2, 3000], # Lower Bound for Ribbon/Confidence Bands Can Be Negative
minor_breaks = 2,
# https://mizani.readthedocs.io/en/stable/transforms.html
trans = miz.transforms.pseudo_log_trans(base = 10, sigma = 1)
)
+ p9.facet_grid(
"model ~ categories",
labeller = lambda lab: {
"Y_counts_friend_lender_ij": "Best Friend\n(Non-indebted)",
"Y_counts_family_lender_ij": "Salient Kin\n(Non-indebted)",
"Y_counts_friend_family_lender_ij": "B. Friend + S. Kin\n(Non-indebted)",
"Y_counts_stranger_lender_ij": "Not B. Friend or S. Kin\n(Non-indebted)",
"Y_counts_friend_lender_ij_lender_ji": "Best Friend\n(Indebted)",
"Y_counts_family_lender_ij_lender_ji": "Salient Kin\n(Indebted)",
"Y_counts_friend_family_lender_ij_lender_ji": "B. Friend + S. Kin\n(Indebted)",
"Y_counts_lender_ij_lender_ji": "Not B. Friend or S. Kin\n(Indebted)",
"Baseline": "Baseline\nModel\n",
"Extended": "Extended\nModel\n",
"Sex": "Sex-Specific\nModel\n"
}[lab]
)
# https://jtools.jacob-long.com/reference/jtools_colors.html
# https://personal.sron.nl/~pault/
+ p9.scale_colour_manual(
values = ["#CC3311", "#EE7733", "#0077BB"],
breaks = ["Baseline", "Extended", "Sex"],
labels = ["Baseline", "Extended", "Sex"]
)
# https://matplotlib.org/stable/tutorials/text/mathtext.html
+ p9.labs(
x = ( # Parentheses creates an atom so we can break string over lines.
"\nNumber of Lenders (0 - 5) of Each Type\n\n"
"(Mean Frequency of Lender Count Across 12,000 Samples from the Posterior"
" Predictive Distribuiton [Solid] versus Observed Frequency [Dashed] of Count)"
),
y = "Frequency in Modelled Compositional Count Matrix $Y$ ($\mathregular{Log_{10}}$ Scale)\n",
title = ""
)
+ p9.theme(
axis_line_x = p9.element_blank(),
axis_line_y = p9.element_blank(),
plot_background = p9.element_blank(),
strip_background = p9.element_blank(),
legend_position = "bottom",
legend_box_spacing = 0.5, # inches
legend_background = p9.element_blank(),
legend_box_background = p9.element_blank(),
legend_key = p9.element_blank(),
legend_key_size = 8,
legend_entry_spacing = 16,
panel_background = p9.element_blank(),
panel_border = p9.element_blank(),
panel_grid_major_x = p9.element_blank(),
panel_grid_minor_x = p9.element_blank(),
panel_grid_major_y = p9.element_blank(), # p9.element_line(size = 0.25, linetype = "solid", colour = "#767676"),
panel_grid_minor_y = p9.element_blank(),
panel_spacing_x = 0.25,
panel_spacing_y = 0.35,
axis_ticks_major_x = p9.element_line(size = 0.5, linetype = "solid", colour = "#767676", alpha = 0.05),
axis_ticks_minor_x = p9.element_blank(),
axis_ticks_major_y = p9.element_blank(),
axis_ticks_minor_y = p9.element_line(size = 0.5, linetype = "solid", colour = "#767676", alpha = 0.05),
axis_ticks_direction_x = "out",
axis_ticks_direction_y = "out",
axis_text_x = p9.element_text(family = "sans-serif", style = "normal", size = 8, colour = "#767676"),
axis_text_y = p9.element_text(family = "sans-serif", style = "normal", size = 8, colour = "#767676"),
axis_title_x = p9.element_text(family = "sans-serif", style = "normal", size = 8, colour = "#767676", linespacing = 1),
axis_title_y = p9.element_text(family = "sans-serif", style = "normal", size = 8, colour = "#767676", linespacing = 1),
legend_title = p9.element_blank(),
legend_text = p9.element_text(family = "sans-serif", style = "normal", size = 8, colour = "#767676"),
plot_title = p9.element_text(family = "sans-serif", style = "normal", size = 8, colour = "#767676"),
strip_text = p9.element_text(family = "sans-serif", style = "normal", size = 8, colour = "#767676"),
figure_size = (12.5, 13) # Inches
)
# This (esoteric) line is used to control how the legend looks, where legend
# aesthetics are typically handled by the various calls to scale_FEATURE_manual.
+ p9.guides(colour = p9.guide_legend(override_aes = dict(alpha = 1, size = 4)))
)
figure_2_ppc.save(
filename = "F2_Posterior_Predictive_Checks_Count_Frequencies.svg",
format = "svg",
dpi = 900, width = 13, height = 5, units = "in",
limitsize = False
)
# Supplementary Figure 2 — Posterior Mean Proportions (Wide/Not Overplotted)