-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert.pyx
40 lines (28 loc) · 1.01 KB
/
convert.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
def to_dense(float[:,:] sparse):
#TODO change to pointer reference
_len = sparse.shape[0]
num = np.count_nonzero(sparse) #automatically returns int
rows = np.zeros(num, dtype=np.uintc)
columns = np.zeros(num, dtype=np.uintc)
values = np.zeros(num, dtype=np.single)
cdef unsigned int[:] rows_view = rows
cdef unsigned int[:] columns_view = columns
cdef float[:] values_view = values
cdef Py_ssize_t i = 0
for row in range(_len):
for col in range(_len):
element = sparse[row,col]
if element != 0:
rows[i] = row
columns[i] = col
values[i] = element
i = i + 1
return rows,columns,values
def to_sparse(unsigned int[:] rows, unsigned int[:] columns, float[:] values):
_size = max(rows)+1
_len = len(rows)
adjacency = np.zeros((_size,_size), dtype=np.single)
for i in range(_len):
adjacency[rows[i],columns[i]] = values[i]
return adjacency