forked from ozanciga/diffusion-for-beginners
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdpm_solver_plus_plus.py
95 lines (76 loc) · 4.3 KB
/
dpm_solver_plus_plus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
import numpy as np
import utils
class DPMPlusPlusSampler:
# https://arxiv.org/abs/2211.01095
def __init__(self, denoiser, num_sample_steps=20, num_train_timesteps=1000):
self.timesteps = np.arange(1, num_train_timesteps+1)
self.t = self.timesteps / num_train_timesteps
beta = utils.get_beta_schedule(num_train_timesteps+1)
self.alpha = {t: v for t, v in zip(self.t, torch.cumprod(1 - beta, dim=0).sqrt())}
self.q = dict()
self.denoiser = denoiser
self.stride = int(num_train_timesteps / num_sample_steps)
self.timesteps = self.timesteps[::self.stride][::-1]
self.t = self.t[::-1]
self.num_train_timesteps = num_train_timesteps
def x_theta(self, x, t, embd, guidance_scale=None):
# data prediction model
alpha_t, sigma_t, _ = self.get_coeffs(t)
timestep = int(max(0, t) * self.num_train_timesteps)
with torch.inference_mode():
noise = self.denoiser(x if guidance_scale is None else torch.cat([x] * 2), timestep, embd).sample
if guidance_scale is not None:
noise_pred_uncond, noise_pred_text = noise.chunk(2)
noise = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
x_pred = (x - sigma_t * noise) / alpha_t # Parameterization: noise prediction and data prediction
# print(t, timestep, x_pred.max(), noise.max(), sigma_t, alpha_t)
return x_pred
def get_coeffs(self, t):
# appendix b.1 for alphas, sigmas, lambdas
'''# below is used for continuous t, uncomment & modify for your needs if you want to
t_next = t + 1 / self.num_train_timesteps
t_n, t_n_next = sampler.t[np.digitize(t, sampler.t)], sampler.t[np.digitize(t+1/self.num_train_timesteps, sampler.t)]
t_n_next = t_n + self.stride
log_alpha_n, log_alpha_n_next = self.alpha[t].log(), self.alpha[t_next].log()
log_alpha_t = log_alpha_n + (log_alpha_n_next-log_alpha_n)/(t_n_next-t_n) * (t-t_n)'''
log_alpha_t = self.alpha[t].log() # comment this out if above is uncommented
alpha_t = log_alpha_t.exp()
sigma_t = (1-alpha_t ** 2).sqrt()
log_sigma_t = sigma_t.log()
lambda_t = log_alpha_t - log_sigma_t
return alpha_t, sigma_t, lambda_t
def dpm_solver_plus_plus_2m(self, x_tilde_prev, t_prev_prev, t_prev, t, text_embeddings, guidance_scale=None):
# algorithm 2
alpha_t, sigma_t, lambda_t = self.get_coeffs(t)
_, sigma_t_prev, lambda_t_prev = self.get_coeffs(t_prev)
_, _, lambda_t_prev_prev = self.get_coeffs(t_prev_prev)
h = lambda_t - lambda_t_prev
h_prev = lambda_t_prev - lambda_t_prev_prev
r = h_prev / h
D = (1 + 1 / (2 * r)) * self.q[t_prev] - 1 / (2 * r) * self.q[t_prev_prev]
x_tilde = sigma_t / sigma_t_prev * x_tilde_prev - alpha_t * torch.expm1(-h) * D
self.q[t] = self.x_theta(x_tilde, t, text_embeddings, guidance_scale)
return x_tilde
def __call__(self, x, timestep_index, text_embeddings, guidance_scale=8.):
# the notation used in this paper is really confusing
# gaussian noise input gets an index of M which maps
# to t_0, i.e., reversed. so
# t0->t1->t2 is M->M-1->M-2. in other words t_prev > t
t = timestep_index.item() / self.num_train_timesteps
t_prev = (timestep_index.item() + self.stride) / self.num_train_timesteps
t_prev_prev = (timestep_index.item() + 2 * self.stride) / self.num_train_timesteps
if timestep_index == self.timesteps[0]:
# first step (xt0)
self.q[t] = self.x_theta(x, t, text_embeddings, guidance_scale)
return x # typo in text, x0 in algorithm 2
elif timestep_index == self.timesteps[1]:
# second step (xt1)
alpha_t, sigma_t, lambda_t = self.get_coeffs(t)
_, sigma_t_prev, lambda_t_prev = self.get_coeffs(t_prev)
h = lambda_t - lambda_t_prev
x_tilde = sigma_t / sigma_t_prev * x - alpha_t * torch.expm1(-h) * self.q[t_prev]
self.q[t] = self.x_theta(x_tilde, t, text_embeddings, guidance_scale)
return x_tilde
# 2 to M loop
return self.dpm_solver_plus_plus_2m(x, t_prev_prev, t_prev, t, text_embeddings, guidance_scale)