-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic.cpp
97 lines (65 loc) · 2 KB
/
logistic.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include "logistic.h"
/*** GLOBALS ***/
boost::random::mt19937 gen;
/*** END GLOBALS ***/
double l_sigmoid(double x)
{
return 1.0 / (1.0 + exp(-x));
}
double l_logisticCostFunction(Eigen::MatrixXd x_samples, Eigen::MatrixXd y_samples, Eigen::MatrixXd theta)
{
double sum = 0.0;
int m = x_samples.cols();
for(int i = 0; i < m; i++)
{
Eigen::MatrixXd input = x_samples.col(i);
unsigned char y = y_samples(i);
double scalar = (theta.transpose() * input)(0);
//printf("Scalar %f \n", scalar);
double h_x = l_sigmoid( scalar );
// printf("Sigmoid: %f \n", h_x);
double first_log = log( h_x );
double second_log = log( 1 - h_x );
sum += ( y * first_log ) + (1 - y) * second_log;
}
sum = sum * (-1.0 / m);
return sum;
}
Eigen::MatrixXd l_vlogisticGradientFunction(Eigen::MatrixXd x_samples, Eigen::MatrixXd y_samples, Eigen::MatrixXd theta)
{
Eigen::MatrixXd gradient;
int m = x_samples.cols();
Eigen::MatrixXd sigmoid_matrix;
sigmoid_matrix.resize(y_samples.rows(), 1);
Eigen::MatrixXd sub_matrix;
sub_matrix.resize(y_samples.rows(),1);
for(int i = 0; i < m; i++)
{
double temp = (theta.transpose() * x_samples.col(i))(0);
sigmoid_matrix(i, 0) = l_sigmoid( temp );
}
sub_matrix = sigmoid_matrix - y_samples;
gradient = ( x_samples * sub_matrix );
return gradient / m;
}
void l_runLogisticRegression(Eigen::MatrixXd * inputs, Eigen::MatrixXd * labels, Eigen::MatrixXd * theta, int iterations, double alpha_rate, double reg_const)
{
int div_iter = iterations / 10;
if(div_iter == 0)
div_iter = 1;
for( int i = 0; i < iterations; i++ )
{
if( i % div_iter == 0){
double cost = l_logisticCostFunction(*inputs, *labels, *theta);
printf("Cost on iteration %d: %f \n", i, cost);
}
Eigen::MatrixXd gradient = l_vlogisticGradientFunction(*inputs, *labels, *theta);
//std::cout << "GRADIENT \n" << gradient << "\n" << std::endl;
(*theta) = (*theta) - alpha_rate * gradient;
}
}
double getRandom_01()
{
double r = ((double) rand() / (RAND_MAX)) + 1;
return r;
}