-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgallery.html
233 lines (211 loc) · 6.95 KB
/
gallery.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Coolfluid 3</title>
</head>
<body>
<style type="text/css" scoped="scoped">
@import url('style.css') screen;
</style>
<a id="header" href="/">
<h1>
<span id="title">Coolfluid 3</span>
<br>
<span id="subtitle">A Collaborative Simulation Environment</span>
</h1>
</a>
<div id="content">
<style type="text/css" scoped="scoped">
div.left_column
{
width:300px;
float:left;
}
div.right_column
{
width:500px;
float:left;
}
div.img
{
/* margin:5px;*/
/* border:1px solid #0000ff;*/
height:auto;
width:280px;
text-align:center;
margin-left: 5px;
margin-right: 20px;
}
div.new_line{
clear: left;
}
div.img img
{
display:inline;
margin:3px;
border:1px solid #ffffff;
width:270px;
}
div.img a:hover img
{
border:1px solid #0000ff;
}
div.desc
{
text-align:center;
font-weight:normal;
width:270px;
margin:2px;
}
div.author
{
font-style:italic;
font-weight:lighter;
}
</style>
<div>
<h2>Gallery</h2>
<h3>UFEM</h3>
<div class="left_column">
<div class="img">
<a href="images/kvs-all.png"><img src="images/kvs-all.png" alt="Von Karman vortex street behind a cylinder"></a>
<div class="desc">Von Karman vortex street behind a cylinder</div>
</div>
</div>
<div class="right_column">
<div class="author"> Created by Bart Janssens</div>
</div>
<div class="new_line"> <br \></div>
<div class="new_line"> <br \></div>
<h3>Spectral Difference Method (SDM)</h3>
<h4>Inviscid flow past cylinder, Mach 0.38</h4>
<div class="left_column">
<div class="img">
<a href="images/sdm_euler_cylinder.png"><img src="images/sdm_euler_cylinder.png" alt="Inviscid flow past cylinder, Mach number 0.38"></a>
<div class="desc">Mach contours for inviscid flow past cylinder, Mach 0.38</div>
</div>
</div>
<div class="right_column">
<p>
Simulation of 2D inviscid flow past cylinder with Mach=0.38. <br \><br \>
Euler equations are solved with a 3rd order Spectral Difference method on a 1024-element quadrangular P2-mesh.
Time integration is done with Backward Euler, solved by a non-linear LU-SGS iterative solver.<br \>
<br \>
High-order visualization is done with Gmsh.
<div class="author"> Created by Willem Deconinck</div>
</p>
</div>
<div class="new_line"> <br \></div>
<h4>Inviscid flow over NACA-0012 airfoil, Mach 0.08, Attack angle 6.7°</h4>
<div class="left_column">
<div class="img">
<a href="images/sdm_euler_naca.jpg"><img src="images/sdm_euler_naca.jpg" alt="Inviscid flow past NACA-0012"></a>
<div class="desc">Pressure contours, Mach 0.08, alpha 6.7°</div>
</div>
</div>
<div class="right_column">
<p>
Simulation of 2D inviscid flow past NACA-0012 airfoil with Mach=0.08, angle of attack 6.7° <br \>
<br \>
Euler equations are solved with a 3rd order Spectral Difference method
on a 6,666-element unstructured quadrangular mesh.<br \>
<br \>
High-order visualization is done with Gmsh.
<div class="author"> Created by Willem Deconinck</div>
</p>
</div>
<div class="new_line"> <br \></div>
<h4>Inviscid flow past wedge, Mach 0.38</h4>
<div class="left_column">
<div class="img">
<a href="images/sdm_euler_wedge.png"><img src="images/sdm_euler_wedge.png" alt="Inviscid flow past cylinder, Mach number 0.38"></a>
<div class="desc">Density for inviscid flow past wedge, Mach 0.2</div>
</div>
</div>
<div class="right_column">
<p>
Simulation of 2D inviscid flow past triangular wedge with Mach=0.2.
Vortex shedding occurs due to numerical viscosity at the sharp trailing edges of the wedge.<br \>
Disclaimer: This is of course not a physical solution.<br \>
<br \>
Euler equations are solved with a 4th order Spectral Difference method on a 11,686-element quadrangular mesh.
Time integration is done with a SD-optimized Explicit Runge-Kutta (18,4) method.<br \>
<br \>
High-order visualization is done with Gmsh.
<div class="author"> Created by Willem Deconinck, Matteo Parsani</div>
</p>
</div>
<div class="new_line"> <br \></div>
<h4>Acoustic pulse with vortex</h4>
<div class="left_column">
<div class="img">
<a href="images/sdm_lineuler_acousticpulse.png"><img src="images/sdm_lineuler_acousticpulse.png" alt="Acoustic pulse with vortex"></a>
<div class="desc">Density for acoustic pulse with vortex</div>
</div>
</div>
<div class="right_column">
<p>
Simulation of an acoustic pulse and a vortex, in a mean-flow with Mach=0.5. This is a benchmark case to test the accuracy and outflow-boundary condition for the linearized Euler equations.<br \><br \>
Linearized Euler equations (LEE) are solved with a 4th order Spectral Difference method on a 50x50 Cartesian mesh.
Time integration is done with Explicit Runge-Kutta (4,4) in low-storage form. <br \>
<br \>
High-order visualization is done with Gmsh.
<div class="author"> Created by Willem Deconinck</div>
</p>
</div>
<div class="new_line"> <br \></div>
<h4>Mach-cone, Mach 1.5</h4>
<div class="left_column">
<div class="img">
<a href="images/sdm_lineuler_machcone3d.png"><img src="images/sdm_lineuler_machcone3d.png" alt="Inviscid flow past cylinder, Mach number 0.38"></a>
<div class="desc">Pressure contours in 2 slices of the domain, Mach number 1.5</div>
</div>
</div>
<div class="right_column">
<p>
Simulation of 3D monopole source term in a background flow with Mach=1.5
Because of the supersonic background flow, the typical mach-cone becomes visible. <br \>
<br \>
The Linearized Euler equations (LEE) are solved with a 5th order Spectral Difference method on a 10x10x10-element hexahedral mesh.
Time integration is done with a low-storage Explicit Runge-Kutta (3,3) method. <br \>
<br \>
High-order visualization is done by interpolating the high-order polynomial solution from the 10x10x10-element mesh to a
fine 100x100x100-element mesh and exporting to Tecplot.
<div class="author"> Created by Willem Deconinck</div>
</p>
</div>
<div class="new_line"> <br \></div>
<div class="new_line"> <br \></div>
<h3>Coolfluid Kernel API</h3>
<h4>Component structure of a typical 2D mesh</h4>
<div class="left_column">
<div class="img">
<a href="images/tree.png"><img src="images/tree.png" alt="Component tree view"></a>
<div class="desc">Component tree view, generated in Python</div>
</div>
</div>
<div class="right_column">
<div class="author"> Created by Tamas Banyai</div>
</div>
<div class="new_line"> <br \></div>
<h4>Detailed information of a Component</h4>
<div class="left_column">
<div class="img">
<a href="images/tree_with_navigation.png"><img src="images/tree_with_navigation.png" alt="Component tree view"></a>
<div class="desc">Component tree view, generated in Python and showing details of a node</div>
</div>
</div>
<div class="right_column">
<div class="author"> Created by Tamas Banyai</div>
</div>
<div class="new_line"> <br \></div>
</div>
</div>
<div id="footer">
<div>
© 2011-2012 The Coolfluid Team
</div>
</div>
</body>
</html>