-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheMG_utilities.py
86 lines (75 loc) · 2.34 KB
/
eMG_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import copy
from eMG_complexity_metrics import *
def print_offline_measures(t):
# fixme: to be expanded
print("\n---Offline-Measures------")
print("Sentence: " + t.sentence)
print("Steps: " + str(t.step))
print("Pending items im mem: " + str(len(t.mg.current_node.mem)))
if t.merge_failed:
print("Pending word (failed to merge): " + t.merge_failed_word)
print("Pending expectations: " + str(t.mg.current_node.get_expect()))
if len(t.mg.current_node.mem) == 0 and t.mg.current_node.get_expect() == "" and len(t.words) == 0 and not t.merge_failed:
print("Prediction: GRAMMATICAL")
else:
print("Prediction: UNGRAMMATICAL")
print("Merge unexpected items: " + str(t.mg.merge_unexpected))
print("Move failures: " + str(get_move_failures()))
print("Ambiguities: " + str(get_MaxD()))
print("MaxD: " + str(get_MaxD()))
print("MaxT: " + str(get_MaxT()))
print("SumT: " + str(get_SumT()))
print("MaxS: " + str(get_MaxS()))
print("RelM: " + str(get_RelM()))
def print_online_measures(t):
print("\n---Online-Measures------")
# words = t.sentence.split()
words = t.words_disambiguated
print("Sentence:\t", end='')
for word in words:
print(word + "\t", end='')
print("\nENCODING:\t", end='')
nodes = copy.deepcopy(t.nodes)
for word in words:
cw = find_word(nodes, word)
print(str(cw.encoding) + "\t", end='')
print("\nINTEGRATION:\t", end='')
nodes = copy.deepcopy(t.nodes)
pw = eMG_node.PMG_node("", [], [], [], "")
pw.index = 0
for word in words:
cw = find_word(nodes, word)
enc = cw.index - pw.index
pw = cw
print(str(enc) + "\t", end='')
print("\nRETRIEVAL:\t", end='')
nodes = copy.deepcopy(t.nodes)
for word in words:
print(str(get_retrieval_cost(nodes, word)) + "\t", end='')
print("\nINTERVENTION:\t", end='')
nodes = copy.deepcopy(t.nodes)
for word in words:
print(str(get_intervention_cost(nodes, word)) + "\t", end='')
def find_word(nodes, word):
node = eMG_node.PMG_node("", [], [], [], "")
for n in range(0, len(nodes)):
if nodes[n].phon == word:
node = nodes[n]
nodes.pop(n)
break
return node
def print_tree(t):
print("\n---Tree------------------")
print("\\begin{forest}")
t.tree.print_node(t.mg.root)
t.tree.print_annotations()
print("\\end{forest}")
def check_choice(choice, size):
check = True
try:
i = int(choice)
if i >= size:
check = False
except ValueError:
check = False
return check