-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathsession5-other-tools.qmd
355 lines (248 loc) · 8.13 KB
/
session5-other-tools.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
---
title: "5: Other tools for Data Science"
author: "Claudia Solis-Lemus and Douglas Bates"
subtitle: "ISMB 2022 Madison"
---
# So far you have learned
- Data tools with `Arrow.jl` and `Tables.jl`
- Model fitting with `MixedModels.jl`
# Other Data Science tools in Julia
- Communication with other systems: R and python
- Package system
- [BioJulia](https://github.com/BioJulia)
- Plotting
- Tuning performance
- Literate programming
## Communication with other systems: Julia interoperability
[JuliaInterop](https://github.com/JuliaInterop)
![](pics/juliainterop.png)
**Note:** Both `RCall` and `PyCall` are written 100% julia
### RCall
[Documentation](https://juliainterop.github.io/RCall.jl/stable/)
Switching between julia and R using `$`:
```julia
julia> using RCall
julia> foo = 1
1
R> x <- $foo
R> x
[1] 1
```
Macros `@rget` and `@rput`:
```julia
julia> z = 1
1
julia> @rput z
1
R> z
[1] 1
R> r = 2
julia> @rget r
2.0
julia> r
2.0
```
`R""` string macro:
```julia
julia> R"rnorm(10)"
RObject{RealSxp}
[1] 0.9515526 -2.1268329 -1.1197652 -1.3737837 -0.5308834 -0.1053615
[7] 1.0949319 -0.8180752 0.7316163 -1.3735100
```
Large chunk of code:
```julia
julia> y=1
1
julia> R"""
f<-function(x,y) x+y
ret<- f(1,$y)
"""
RObject{RealSxp}
[1] 2
```
#### A small example from [this blog](http://luiarthur.github.io/usingrcall)
Simulate data
```julia
julia> using Random
julia> Random.seed!(1234)
MersenneTwister(1234)
julia> X = randn(3,2)
3×2 Matrix{Float64}:
0.867347 -0.902914
-0.901744 0.864401
-0.494479 2.21188
julia> b = reshape([2.0, 3.0], 2,1)
2×1 Matrix{Float64}:
2.0
3.0
julia> y = X * b + randn(3,1)
3×1 Matrix{Float64}:
-0.4412351955236954
0.5179809120122916
6.149009488103242
```
Fit a model
```julia
julia> @rput y
3×1 Matrix{Float64}:
-0.4412351955236954
0.5179809120122916
6.149009488103242
julia> @rput X
3×2 Matrix{Float64}:
0.867347 -0.902914
-0.901744 0.864401
-0.494479 2.21188
julia> R"mod <- lm(y ~ X-1)"
RObject{VecSxp}
Call:
lm(formula = y ~ X - 1)
Coefficients:
X1 X2
2.867 3.418
julia> R"summary(mod)"
RObject{VecSxp}
Call:
lm(formula = y ~ X - 1)
Residuals:
1 2 3
0.158301 0.148692 0.006511
Coefficients:
Estimate Std. Error t value Pr(>|t|)
X1 2.8669 0.2566 11.17 0.0568 .
X2 3.4180 0.1359 25.15 0.0253 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.2173 on 1 degrees of freedom
Multiple R-squared: 0.9988, Adjusted R-squared: 0.9963
F-statistic: 404.8 on 2 and 1 DF, p-value: 0.03512
julia> R"plot(X[,1],y)"
```
### PyCall
[Documentation](https://github.com/JuliaPy/PyCall.jl)
Note that `(@v1.8) pkg> add PyCall` will use the `Conda.jl` package to install a minimal Python distribution (via [Miniforge](https://github.com/conda-forge/miniforge)) that is private to Julia (not in your PATH).
We need to make sure that `which conda` points at the conda folder inside `.julia`, so we need to put `~/.julia/conda/3/bin` early on the PATH. In Mac zsh, we need to add
`export PATH=~/.julia/conda/3/bin:$PATH` in the `~/.zshrc` file.
(Those who prefer not to conda-ize their entire environment may instead choose just to link `~/.julia/conda/3/bin/{conda,jupyter,python,python3}` somewhere on their existing path, such as `~/bin`.)
Simple example:
```julia
using PyCall
math = pyimport("math")
math.sin(math.pi / 4)
```
`py"..."` evaluates `"..."` as Python code:
```julia
py"""
import numpy as np
def sinpi(x):
return np.sin(np.pi * x)
"""
py"sinpi"(1)
```
### More on Julia/python connectivity
- The [pyjulia](https://github.com/JuliaPy/pyjulia) module allows you to call Julia directly from Python
- Check out the packages in [JuliaPy](https://github.com/JuliaPy)
## Package system
- Starting on Julia 1.6, precompilation is much faster
- Many changes under the hood that allow things to work faster and more smoothly
- A local environment can be established and preserved with `Project.toml` and `Manifest.toml` files.
- Use of `Artifacts.toml` allows for binary dependencies
### Landscape of Julia packages for biology
- [BioJulia](https://github.com/BioJulia) is a combination of Julia packages for biology applications.
- [Julia for Biologists](https://arxiv.org/abs/2109.09973) is an arxiv paper the features that make Julia a perfect language for bioinformatics and computational biology.
- [List of useful packages from another workshop, SMLP2022](https://repsychling.github.io/SMLP2022/useful_packages.html)
## Plotting
- [Makie ecosystem](https://makie.juliaplots.org/stable/)
- [Plots.jl](https://docs.juliaplots.org/latest/)
- [Other graphics packages available in Julia](https://juliapackages.com/c/graphics)
## Performance tips
See more in [Julia docs](https://docs.julialang.org/en/v1/manual/performance-tips/)
### `@time` to measure performance
```julia
julia> x = rand(1000);
julia> function sum_global()
s = 0.0
for i in x
s += i
end
return s
end;
julia> @time sum_global() ## function gets compiled
0.017705 seconds (15.28 k allocations: 694.484 KiB)
496.84883432553846
julia> @time sum_global()
0.000140 seconds (3.49 k allocations: 70.313 KiB)
496.84883432553846
```
### Break functions into multiple definitions
The function
```julia
using LinearAlgebra
function mynorm(A)
if isa(A, Vector)
return sqrt(real(dot(A,A)))
elseif isa(A, Matrix)
return maximum(svdvals(A))
else
error("mynorm: invalid argument")
end
end
```
should really be written as
```julia
norm(x::Vector) = sqrt(real(dot(x, x)))
norm(A::Matrix) = maximum(svdvals(A))
```
to allow the compiler to directly call the most applicable code.
#### Multiple dispatch
- The choice of which method to execute when a function is applied is called _dispatch_
- Julia allows the dispatch process to choose based on the number of arguments given, and on the types of all of the function's arguments
- This is denoted _multiple dispatch_
- This is different than traditional object-oriented languages, where dispatch occurs based only on the first argument
```julia
julia> f(x::Float64, y::Float64) = 2x + y
f (generic function with 1 method)
julia> f(2.0, 3.0)
7.0
julia> f(2.0, 3)
ERROR: MethodError: no method matching f(::Float64, ::Int64)
Closest candidates are:
f(::Float64, !Matched::Float64) at none:1
```
Compare to
```julia
julia> f(x::Number, y::Number) = 2x + y
f (generic function with 2 methods)
julia> f(2.0, 3.0)
7.0
julia> f(2, 3.0)
7.0
julia> f(2.0, 3)
7.0
julia> f(2, 3)
7
```
### Profiling
Read more in [Julia docs](https://docs.julialang.org/en/v1/manual/profile/#Profiling).
```julia
julia> function myfunc()
A = rand(200, 200, 400)
maximum(A)
end
julia> myfunc() # run once to force compilation
julia> using Profile
julia> @profile myfunc()
julia> Profile.print()
```
To see the profiling results, there are several graphical browsers (see [Julia docs](https://docs.julialang.org/en/v1/manual/profile/#Profiling)).
### Other packages for performance
- [BenchmarkTools.jl](https://github.com/JuliaCI/BenchmarkTools.jl): performance tracking of Julia code
- [Traceur.jl](https://github.com/JunoLab/Traceur.jl): You run your code, it tells you about any obvious performance traps
## Literate programming
- [quarto.org](https://quarto.org/). These notes are rendered with quarto!
- [Jupyter](https://jupyter.org)
- [Pluto.jl](https://github.com/fonsp/Pluto.jl)
- [Weave.jl](https://weavejl.mpastell.com/stable/) package provides "Julia markdown" and also provides support for converting between `jmd` files and Jupyter notebooks.
- [Literate.jl](https://fredrikekre.github.io/Literate.jl/v2/) is a simple package for literate programming (i.e. programming where documentation and code are "woven" together) and can generate Markdown, plain code and Jupyter notebook output.
- [Documenter.jl](https://juliadocs.github.io/Documenter.jl/stable/) is the standard tool for building webpages from Julia documentation
- [Books.jl](https://rikhuijzer.github.io/Books.jl/) is a package designed to offer somewhat similar functionality to the `bookdown` package in R.