-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfeatures.py
430 lines (345 loc) · 12.2 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import emoji
import numpy as np
import os
import os.path
import pandas as pd
import pickle
import re
import subprocess
from collections import namedtuple, defaultdict
from nltk.corpus import stopwords
from nltk.tag import StanfordNERTagger
from nltk.tokenize import word_tokenize
from numpy import mean, zeros
import utils
RT = "./"
BROWNCLUSFILE = RT + "model/resources/browncluster.txt"
STOPWORDS = stopwords
POSITIVE = RT + "model/resources/positive-words.txt"
NEGATIVE = RT + "model/resources/negative-words.txt"
# default name entities.
NER_title = {'ORGANIZATION': 0, "PERCENT": 1, 'PERSON': 2, 'DATE': 3,
'MONEY': 4, 'TIME': 5, 'LOCATION': 6}
class RawSent:
def __init__(self, senttxt):
## tokenized sentence format
self.tokens = senttxt.split()
def getNumTokens(self):
return len(self.tokens)
def getTokens(self):
return self.tokens
def getStr(self):
return " ".join(self.tokens)
def __repr__(self):
return self.getStr()
# round the decimal numbers to fit in classfication.
def extractPOS(sentlst):
# Used to convert sentlst to tags.
# if not os.path.exists("/Users/yangzhong/Desktop/NLPparser/mturk_specificity/input.txt"):
with open("input.txt", "w", encoding="utf-8") as f:
print("Reading the original sentences ....")
for line in sentlst:
f.write(line.getStr() + "\n")
f.close()
print("Done Reading sentences ...")
print("already has the file, start tagging ...")
subprocess.call(['./extractPostag.sh'])
print("Successfully covert pos-tags")
with open("sample-tagged.txt", "r", encoding="utf-8") as f:
f = f.readlines()
f = [x.strip() for x in f]
f = [y.split() for y in f]
all_tags = []
tag_with_Number = {}
for line in f:
tag_list = []
for word_tag in line:
word_tag = word_tag.split("_")
tag = word_tag[1]
tag_list.append(tag)
if tag not in tag_with_Number:
tag_with_Number[tag] = 1
else:
tag_with_Number[tag] += 1
all_tags.append(tag_list)
# Set default useful_tag.
Useful_Tag = ['DT', 'NN', "VB", 'JJ', 'IN', '.', 'PRP', 'NNP', 'WP']
big_matrix = []
tag_2_index = {}
for index, tag in enumerate(Useful_Tag):
tag_2_index[tag] = index
for line in all_tags:
count = [0] * len(tag_2_index)
for item in line:
if item in Useful_Tag:
count[tag_2_index[item]] += 1
elif re.match("VB", item):
count[tag_2_index["VB"]] += 1
elif re.match("NN", item):
count[tag_2_index["NN"]] += 1
big_matrix.append(count)
df = pd.DataFrame()
df["Tweet"] = [sent for sent in sentlst]
for fid, fname in enumerate(Useful_Tag):
df[fname] = [big_matrix[j][fid] for j in range(len(big_matrix))]
df.to_csv("USEFUL_TAG.csv")
return df
# Create features on name_entities.
def NE_Concrete_Emo(sentlst):
print("Start doing name_entities extraction and concrete extraction")
positive = []
negative = []
words = {}
# Initialize concrete dictionaries, possitive and negative words list.
with open('./model/resources/concrete.csv', encoding='utf-8') as in_file:
in_file.readline()
for line in in_file:
l = line.split(',')
if l[1] == '0':
words[l[0]] = float(l[2])
with open(POSITIVE, encoding='utf-8') as in_file:
for line in in_file:
word = line.strip()
if len(word) == 0:
continue
if word[0] == ';':
continue
positive.append(word)
with open(NEGATIVE, encoding='gbk') as in_file:
for line in in_file:
word = line.strip()
if len(word) == 0:
continue
if word[0] == ';':
continue
negative.append(word)
st = StanfordNERTagger(
"./model/resources/english.muc.7class.distsim.crf.ser.gz",
"./model/resources/stanford-ner.jar", encoding='utf-8')
big_matrix = []
for index, line in enumerate(sentlst):
tokens = word_tokenize(line.getStr())
count = [0] * 10
concrete = []
tagger = st.tag(tokens)
# Do the concrete count.
for word, tag in tagger:
if tag in NER_title:
count[NER_title[tag]] += 1
for token in tokens:
if token in negative:
count[8] += 1
elif token in positive:
count[9] += 1
if token in words:
concrete.append(words[token])
if len(concrete) > 0:
concrete_score = sum(concrete) / len(concrete)
else:
concrete_score = 0
count = [i / len(tokens) for i in count]
count[7] = concrete_score
big_matrix.append(count)
df = pd.DataFrame()
df["Tweet"] = [sent for sent in sentlst]
Useful_Tag = list(NER_title.keys())
Useful_Tag += ["Concrete", "Negative", "Positive"]
for fid, fname in enumerate(Useful_Tag):
df[fname] = [big_matrix[j][fid] for j in range(len(big_matrix))]
df.to_csv("NE_Concrete_Emo.csv")
return df
def convertNum(floatNum):
integer = floatNum // 1
decimal = floatNum % 1
if decimal < 0.5:
return integer
elif decimal > 0.5:
return integer + 1
else:
if integer == 1 or integer == 3:
return integer + 1
else:
return integer
# initialize word_embedding dictionary.
def init_embeding(file=RT + "model/resources/glove.twitter.27B.100d.txt",
word_2_idx=[], encoding="utf-8"):
word_embedding_dict = {}
with open(file, encoding=encoding) as f:
for line in f:
line = line.strip().split()
word_embedding_dict[line[0].lower()] = np.asarray(line[1:])
print("Successfully save embeddingfile")
return word_embedding_dict
### Check the place of @user.
def checkReply(string):
if string.startswith("'<USER>") or string.startswith("<USER>"):
return 0
elif string.count("<USER>") >= 1:
return 1
else:
return 2
def user_begin_or_else(sentlst):
tweet_user_begin = []
tweet_user_else = []
sentlist = [r.getStr() for r in sentlst]
for tweet in sentlist:
if checkReply(tweet) == 0: # this is a reply to former users.
tweet_user_begin.append(1)
tweet_user_else.append(0)
elif checkReply(tweet) == 1:
tweet_user_begin.append(0)
tweet_user_else.append(1)
else:
tweet_user_begin.append(0)
tweet_user_else.append(0)
return tweet_user_begin, tweet_user_else
#############################################3
# get the embeddling list.
def word_2_weights(sentlst, embeding_dict):
# initial word_embedding_Dict
embeddingList = []
word_embedding_dict = init_embeding()
embedding_dim = len(word_embedding_dict["for"])
for sent in sentlst:
embedding_matrix = np.zeros((sent.getNumTokens(), embedding_dim))
for index in range(sent.getNumTokens()):
word = sent.getTokens()[index].lower()
if word in word_embedding_dict.keys():
embedding_matrix[index] = word_embedding_dict[word]
else:
new_vector = np.random.random(embedding_dim) * -2 + 1
embedding_matrix[index] = new_vector
embeding_dict[word] = new_vector
embeddingList.append((np.mean(embedding_matrix, axis=0)))
return embeddingList
# count number of URLs.
def numUrl(sentlst):
return [t.getTokens().count("<URL>") for t in sentlst]
# messure Sentence's length.
def sentLen(sentlst):
return [t.getNumTokens() for t in sentlst]
# Count the number of Capital Letters.
def numCapLetters(sentlst, normalize=True):
ret = []
for t in sentlst:
v = len([x for x in t.getStr() if x.isupper()])
ret.append((v + 0.0) / t.getNumTokens() if normalize else v)
return ret
def numUsers(sentlst):
return [t.getTokens().count("<USER>") for t in sentlst]
# count the number of #s.
def numNumbers(sentlst, normalize):
ret = []
for t in sentlst:
v = len([x for x in t.getTokens() if _is_num(x)])
ret.append((v + 0.0) / t.getNumTokens() if normalize else v)
return ret
def checkEmoji(string):
emojis = [c for c in string if c in emoji.UNICODE_EMOJI]
if len(emojis) > 0:
return True
else:
return False
# Count the number of Symbols.
def numSymbols(sentlst, normalize):
ret = []
for t in sentlst:
v = len([x for x in t.getStr() if
not x.isalnum() and x != " " and not checkEmoji(x)])
ret.append((v + 0.0) / t.getNumTokens() if normalize else v)
return ret
# Count the number of emoji in each line.
def countEmoji(sentlst, normalize=False):
emoji_list = []
recs = [t.getStr() for t in sentlst]
for line in recs:
emojis = [c for c in line if c in emoji.UNICODE_EMOJI]
v = len(emojis)
emoji_list.append((v + 0.0) / len(line.split()) if normalize else v)
return emoji_list
# Count the average word length in each sentence.
def avgWordLen(sentlst):
ret = []
for t in sentlst:
v = [len(x) for x in t.getTokens()]
ret.append(mean(v))
return ret
# Count the number of stopwords.
def fracStopwords(sentlst):
ret = []
for t in sentlst:
v = len([x for x in t.getTokens() if x.lower() in STOPWORDS])
ret.append((v + 0.0) / t.getNumTokens())
return ret
def _is_num(s): ## s:string
try:
float(s)
return True
except ValueError:
pass
except TypeError:
pass
return False
################################################
# Brown Cluster.
def brownCluster(sentlst, brnclst, cluster_2_index, number):
lines = []
for instance in sentlst:
count = [0] * number
rs = getBrownClusNgram(instance, 1, brnclst)
rs = ["_".join(x) for x in rs]
for item in rs:
# If the word does not exist in the cluster, ignore it.
if item == "UNK":
pass
else:
count[cluster_2_index[item]] += 1
for i in range(len(count)):
count[i] = count[i] / len(rs)
lines.append(count)
return lines
def getBrownClusNgram(t, n, brnclst):
ls = []
txts = t.getTokens()
for nodetxt in txts:
nodetxt = nodetxt.lower()
if (nodetxt) in brnclst:
ls.append(brnclst[nodetxt])
else: ## if not in cluster file, then use OOV symbol
ls.append("UNK")
return _sliding_window(ls, n)
def _sliding_window(l, n):
return [tuple(l[i:i + n]) for i in range(len(l) - n + 1)]
def ParseText(string):
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\?", " ? ", string)
string = re.sub(r"\!", " ! ", string)
string = re.sub("\.", " . ", string)
string = re.sub(r"\(", " ( ", string)
string = re.sub(r"\)", " ) ", string)
string = re.sub(r"\?", " ? ", string)
string = re.sub(r"\:", " : ", string)
string = re.sub(r"\s{2,}", " ", string)
try:
# Wide UCS-4 build
oRes = re.compile(u'(['
u'\U0001F300-\U0001F64F'
u'\U0001F680-\U0001F6FF'
u'\u2600-\u26FF\u2700-\u27BF]+)',
re.UNICODE)
except re.error:
# Narrow UCS-2 build
oRes = re.compile(u'(('
u'\ud83c[\udf00-\udfff]|'
u'\ud83d[\udc00-\ude4f\ude80-\udeff]|'
u'[\u2600-\u26FF\u2700-\u27BF])+)',
re.UNICODE)
string = oRes.sub(r' \1 ', string)
return string