-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyse_ccc.R
88 lines (65 loc) · 2.34 KB
/
analyse_ccc.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# @DEPI rna_decontaminated.rds
# @DEPI metadata.rds
# @DEPO ccc_cellchat_object.rds
# @DEPO ccc_signaling_data.rds
library(SingleCellExperiment)
library(CellChat)
library(tidyverse)
# Load data ---------------------------------------------------------------
nb_metadata <-
read_rds("data_generated/metadata.rds") %>%
select(
cell, library_size, n_features, sample,
group, cellont_name, cellont_abbr,
) %>%
filter(cellont_abbr != "other", group != "I") %>%
mutate(
cellont_abbr =
cellont_abbr %>%
fct_drop() %>%
fct_relevel("NB", "pDC", "M", "B", "T", "NK", "SC", "E")
) %>%
column_to_rownames("cell")
expr_data <-
readRDS("data_generated/rna_decontaminated.rds") %>%
assay("soupx_counts") %>%
normalizeData(scale.factor = 1e6) %>%
magrittr::extract(, rownames(nb_metadata))
# Analyze data ------------------------------------------------------------
cellchat <- createCellChat(
expr_data,
meta = nb_metadata,
group.by = "cellont_abbr",
)
cellchat@DB <- CellChatDB.human
# only keep genes in CellChatDB
cellchat <- subsetData(cellchat)
# find overexpressed ligands/receptors
cellchat <- identifyOverExpressedGenes(cellchat)
# find overexpressed interactions
cellchat <- identifyOverExpressedInteractions(cellchat)
# calculate communication probability between cell groups
cellchat <- computeCommunProb(cellchat, seed.use = 1)
# filter communications occurring with less than 10 cells in a cell group
cellchat <- filterCommunication(cellchat)
# calculate communication probability on the signaling pathway level
cellchat <- computeCommunProbPathway(cellchat)
# calculate aggregated communication network
cellchat <- aggregateNet(cellchat)
# determine network centrality pathways
cellchat <- netAnalysis_computeCentrality(cellchat)
# single LR dotplot data
df_net <-
cellchat %>%
subsetCommunication(thresh = NA) %>%
as_tibble() %>%
group_by(interaction_name_2) %>%
mutate(prob.norm = prob / max(prob)) %>%
ungroup() %>%
mutate(
source = factor(source, c("NB", "pDC", "M", "B", "T", "NK", "SC", "E")),
target = factor(target, c("NB", "pDC", "M", "B", "T", "NK", "SC", "E")),
)
# Save data ---------------------------------------------------------------
cellchat %>% saveRDS("data_generated/ccc_cellchat_object.rds")
df_net %>% saveRDS("data_generated/ccc_signaling_data.rds")