-
Notifications
You must be signed in to change notification settings - Fork 643
/
Copy pathmain_test_vrt.py
executable file
·375 lines (320 loc) · 18.3 KB
/
main_test_vrt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import cv2
import glob
import os
import torch
import requests
import numpy as np
from os import path as osp
from collections import OrderedDict
from torch.utils.data import DataLoader
from models.network_vrt import VRT as net
from utils import utils_image as util
from data.dataset_video_test import VideoRecurrentTestDataset, VideoTestVimeo90KDataset, \
SingleVideoRecurrentTestDataset, VFI_DAVIS, VFI_UCF101, VFI_Vid4
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='001_VRT_videosr_bi_REDS_6frames', help='tasks: 001 to 008')
parser.add_argument('--sigma', type=int, default=0, help='noise level for denoising: 10, 20, 30, 40, 50')
parser.add_argument('--folder_lq', type=str, default='testsets/REDS4/sharp_bicubic',
help='input low-quality test video folder')
parser.add_argument('--folder_gt', type=str, default=None,
help='input ground-truth test video folder')
parser.add_argument('--tile', type=int, nargs='+', default=[40,128,128],
help='Tile size, [0,0,0] for no tile during testing (testing as a whole)')
parser.add_argument('--tile_overlap', type=int, nargs='+', default=[2,20,20],
help='Overlapping of different tiles')
parser.add_argument('--num_workers', type=int, default=16, help='number of workers in data loading')
parser.add_argument('--save_result', action='store_true', help='save resulting image')
args = parser.parse_args()
# define model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = prepare_model_dataset(args)
model.eval()
model = model.to(device)
if 'vimeo' in args.folder_lq.lower():
if 'videofi' in args.task:
test_set = VideoTestVimeo90KDataset({'dataroot_gt':args.folder_gt, 'dataroot_lq':args.folder_gt,
'meta_info_file': "data/meta_info/meta_info_Vimeo90K_test_GT.txt",
'pad_sequence': False, 'num_frame': 7, 'temporal_scale': 2,
'cache_data': False})
else:
test_set = VideoTestVimeo90KDataset({'dataroot_gt': args.folder_gt, 'dataroot_lq': args.folder_lq,
'meta_info_file': "data/meta_info/meta_info_Vimeo90K_test_GT.txt",
'pad_sequence': True, 'num_frame': 7, 'temporal_scale': 1,
'cache_data': False})
elif 'davis' in args.folder_lq.lower() and 'videofi' in args.task:
test_set = VFI_DAVIS(data_root=args.folder_gt)
elif 'ucf101' in args.folder_lq.lower() and 'videofi' in args.task:
test_set = VFI_UCF101(data_root=args.folder_gt)
elif 'vid4' in args.folder_lq.lower() and 'videofi' in args.task:
test_set = VFI_Vid4(data_root=args.folder_gt)
elif args.folder_gt is not None:
test_set = VideoRecurrentTestDataset({'dataroot_gt':args.folder_gt, 'dataroot_lq':args.folder_lq,
'sigma':args.sigma, 'num_frame':-1, 'cache_data': False})
else:
test_set = SingleVideoRecurrentTestDataset({'dataroot_gt':args.folder_gt, 'dataroot_lq':args.folder_lq,
'sigma':args.sigma, 'num_frame':-1, 'cache_data': False})
test_loader = DataLoader(dataset=test_set, num_workers=args.num_workers, batch_size=1, shuffle=False)
save_dir = f'results/{args.task}'
if args.save_result:
os.makedirs(save_dir, exist_ok=True)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
assert len(test_loader) != 0, f'No dataset found at {args.folder_lq}'
for idx, batch in enumerate(test_loader):
lq = batch['L'].to(device)
folder = batch['folder']
gt = batch['H'] if 'H' in batch else None
# inference
with torch.no_grad():
output = test_video(lq, model, args)
if 'videofi' in args.task:
output = output[:, :1, ...]
batch['lq_path'] = batch['gt_path']
elif 'videosr' in args.task and 'vimeo' in args.folder_lq.lower():
output = output[:, 3:4, :, :, :]
batch['lq_path'] = batch['gt_path']
test_results_folder = OrderedDict()
test_results_folder['psnr'] = []
test_results_folder['ssim'] = []
test_results_folder['psnr_y'] = []
test_results_folder['ssim_y'] = []
for i in range(output.shape[1]):
# save image
img = output[:, i, ...].data.squeeze().float().cpu().clamp_(0, 1).numpy()
if img.ndim == 3:
img = np.transpose(img[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
img = (img * 255.0).round().astype(np.uint8) # float32 to uint8
if args.save_result:
seq_ = osp.basename(batch['lq_path'][i][0]).split('.')[0]
os.makedirs(f'{save_dir}/{folder[0]}', exist_ok=True)
cv2.imwrite(f'{save_dir}/{folder[0]}/{seq_}.png', img)
# evaluate psnr/ssim
if gt is not None:
img_gt = gt[:, i, ...].data.squeeze().float().cpu().clamp_(0, 1).numpy()
if img_gt.ndim == 3:
img_gt = np.transpose(img_gt[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
img_gt = (img_gt * 255.0).round().astype(np.uint8) # float32 to uint8
img_gt = np.squeeze(img_gt)
test_results_folder['psnr'].append(util.calculate_psnr(img, img_gt, border=0))
test_results_folder['ssim'].append(util.calculate_ssim(img, img_gt, border=0))
if img_gt.ndim == 3: # RGB image
img = util.bgr2ycbcr(img.astype(np.float32) / 255.) * 255.
img_gt = util.bgr2ycbcr(img_gt.astype(np.float32) / 255.) * 255.
test_results_folder['psnr_y'].append(util.calculate_psnr(img, img_gt, border=0))
test_results_folder['ssim_y'].append(util.calculate_ssim(img, img_gt, border=0))
else:
test_results_folder['psnr_y'] = test_results_folder['psnr']
test_results_folder['ssim_y'] = test_results_folder['ssim']
if gt is not None:
psnr = sum(test_results_folder['psnr']) / len(test_results_folder['psnr'])
ssim = sum(test_results_folder['ssim']) / len(test_results_folder['ssim'])
psnr_y = sum(test_results_folder['psnr_y']) / len(test_results_folder['psnr_y'])
ssim_y = sum(test_results_folder['ssim_y']) / len(test_results_folder['ssim_y'])
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
test_results['psnr_y'].append(psnr_y)
test_results['ssim_y'].append(ssim_y)
print('Testing {:20s} ({:2d}/{}) - PSNR: {:.2f} dB; SSIM: {:.4f}; PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}'.
format(folder[0], idx, len(test_loader), psnr, ssim, psnr_y, ssim_y))
else:
print('Testing {:20s} ({:2d}/{})'.format(folder[0], idx, len(test_loader)))
# summarize psnr/ssim
if gt is not None:
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
print('\n{} \n-- Average PSNR: {:.2f} dB; SSIM: {:.4f}; PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}'.
format(save_dir, ave_psnr, ave_ssim, ave_psnr_y, ave_ssim_y))
def prepare_model_dataset(args):
''' prepare model and dataset according to args.task. '''
# define model
if args.task == '001_VRT_videosr_bi_REDS_6frames':
model = net(upscale=4, img_size=[6,64,64], window_size=[6,8,8], depths=[8,8,8,8,8,8,8, 4,4,4,4, 4,4],
indep_reconsts=[11,12], embed_dims=[120,120,120,120,120,120,120, 180,180,180,180, 180,180],
num_heads=[6,6,6,6,6,6,6, 6,6,6,6, 6,6], pa_frames=2, deformable_groups=12)
datasets = ['REDS4']
args.scale = 4
args.window_size = [6,8,8]
args.nonblind_denoising = False
elif args.task == '002_VRT_videosr_bi_REDS_16frames':
model = net(upscale=4, img_size=[16,64,64], window_size=[8,8,8], depths=[8,8,8,8,8,8,8, 4,4,4,4, 4,4],
indep_reconsts=[11,12], embed_dims=[120,120,120,120,120,120,120, 180,180,180,180, 180,180],
num_heads=[6,6,6,6,6,6,6, 6,6,6,6, 6,6], pa_frames=6, deformable_groups=24)
datasets = ['REDS4']
args.scale = 4
args.window_size = [8,8,8]
args.nonblind_denoising = False
elif args.task in ['003_VRT_videosr_bi_Vimeo_7frames', '004_VRT_videosr_bd_Vimeo_7frames']:
model = net(upscale=4, img_size=[8,64,64], window_size=[8,8,8], depths=[8,8,8,8,8,8,8, 4,4,4,4, 4,4],
indep_reconsts=[11,12], embed_dims=[120,120,120,120,120,120,120, 180,180,180,180, 180,180],
num_heads=[6,6,6,6,6,6,6, 6,6,6,6, 6,6], pa_frames=4, deformable_groups=16)
datasets = ['Vid4'] # 'Vimeo'. Vimeo dataset is too large. Please refer to #training to download it.
args.scale = 4
args.window_size = [8,8,8]
args.nonblind_denoising = False
elif args.task in ['005_VRT_videodeblurring_DVD']:
model = net(upscale=1, img_size=[6,192,192], window_size=[6,8,8], depths=[8,8,8,8,8,8,8, 4,4, 4,4],
indep_reconsts=[9,10], embed_dims=[96,96,96,96,96,96,96, 120,120, 120,120],
num_heads=[6,6,6,6,6,6,6, 6,6, 6,6], pa_frames=2, deformable_groups=16)
datasets = ['DVD10']
args.scale = 1
args.window_size = [6,8,8]
args.nonblind_denoising = False
elif args.task in ['006_VRT_videodeblurring_GoPro']:
model = net(upscale=1, img_size=[6,192,192], window_size=[6,8,8], depths=[8,8,8,8,8,8,8, 4,4, 4,4],
indep_reconsts=[9,10], embed_dims=[96,96,96,96,96,96,96, 120,120, 120,120],
num_heads=[6,6,6,6,6,6,6, 6,6, 6,6], pa_frames=2, deformable_groups=16)
datasets = ['GoPro11-part1', 'GoPro11-part2']
args.scale = 1
args.window_size = [6,8,8]
args.nonblind_denoising = False
elif args.task in ['007_VRT_videodeblurring_REDS']:
model = net(upscale=1, img_size=[6,192,192], window_size=[6,8,8], depths=[8,8,8,8,8,8,8, 4,4, 4,4],
indep_reconsts=[9,10], embed_dims=[96,96,96,96,96,96,96, 120,120, 120,120],
num_heads=[6,6,6,6,6,6,6, 6,6, 6,6], pa_frames=2, deformable_groups=16)
datasets = ['REDS4']
args.scale = 1
args.window_size = [6,8,8]
args.nonblind_denoising = False
elif args.task == '008_VRT_videodenoising_DAVIS':
model = net(upscale=1, img_size=[6,192,192], window_size=[6,8,8], depths=[8,8,8,8,8,8,8, 4,4, 4,4],
indep_reconsts=[9,10], embed_dims=[96,96,96,96,96,96,96, 120,120, 120,120],
num_heads=[6,6,6,6,6,6,6, 6,6, 6,6], pa_frames=2, deformable_groups=16,
nonblind_denoising=True)
datasets = ['Set8', 'DAVIS-test']
args.scale = 1
args.window_size = [6,8,8]
args.nonblind_denoising = True
elif args.task == '009_VRT_videofi_Vimeo_4frames':
model = net(upscale=1, out_chans=3, img_size=[4,192,192], window_size=[4,8,8], depths=[8,8,8,8,8,8,8, 4,4, 4,4],
indep_reconsts=[], embed_dims=[96,96,96,96,96,96,96, 120,120, 120,120],
num_heads=[6,6,6,6,6,6,6, 6,6, 6,6], pa_frames=0)
datasets = ['UCF101', 'DAVIS-train'] # 'Vimeo'. Vimeo dataset is too large. Please refer to #training to download it.
args.scale = 1
args.window_size = [4,8,8]
args.nonblind_denoising = False
# download model
model_path = f'model_zoo/vrt/{args.task}.pth'
if os.path.exists(model_path):
print(f'loading model from ./model_zoo/vrt/{model_path}')
else:
os.makedirs(os.path.dirname(model_path), exist_ok=True)
url = 'https://github.com/JingyunLiang/VRT/releases/download/v0.0/{}'.format(os.path.basename(model_path))
r = requests.get(url, allow_redirects=True)
print(f'downloading model {model_path}')
open(model_path, 'wb').write(r.content)
pretrained_model = torch.load(model_path)
model.load_state_dict(pretrained_model['params'] if 'params' in pretrained_model.keys() else pretrained_model, strict=True)
# download datasets
if os.path.exists(f'{args.folder_lq}'):
print(f'using dataset from {args.folder_lq}')
else:
if 'vimeo' in args.folder_lq.lower():
print(f'Vimeo dataset is not at {args.folder_lq}! Please refer to #training of Readme.md to download it.')
else:
os.makedirs('testsets', exist_ok=True)
for dataset in datasets:
url = f'https://github.com/JingyunLiang/VRT/releases/download/v0.0/testset_{dataset}.tar.gz'
r = requests.get(url, allow_redirects=True)
print(f'downloading testing dataset {dataset}')
open(f'testsets/{dataset}.tar.gz', 'wb').write(r.content)
os.system(f'tar -xvf testsets/{dataset}.tar.gz -C testsets')
os.system(f'rm testsets/{dataset}.tar.gz')
return model
def test_video(lq, model, args):
'''test the video as a whole or as clips (divided temporally). '''
num_frame_testing = args.tile[0]
if num_frame_testing:
# test as multiple clips if out-of-memory
sf = args.scale
num_frame_overlapping = args.tile_overlap[0]
not_overlap_border = False
b, d, c, h, w = lq.size()
c = c - 1 if args.nonblind_denoising else c
stride = num_frame_testing - num_frame_overlapping
d_idx_list = list(range(0, d-num_frame_testing, stride)) + [max(0, d-num_frame_testing)]
E = torch.zeros(b, d, c, h*sf, w*sf)
W = torch.zeros(b, d, 1, 1, 1)
for d_idx in d_idx_list:
lq_clip = lq[:, d_idx:d_idx+num_frame_testing, ...]
out_clip = test_clip(lq_clip, model, args)
out_clip_mask = torch.ones((b, min(num_frame_testing, d), 1, 1, 1))
if not_overlap_border:
if d_idx < d_idx_list[-1]:
out_clip[:, -num_frame_overlapping//2:, ...] *= 0
out_clip_mask[:, -num_frame_overlapping//2:, ...] *= 0
if d_idx > d_idx_list[0]:
out_clip[:, :num_frame_overlapping//2, ...] *= 0
out_clip_mask[:, :num_frame_overlapping//2, ...] *= 0
E[:, d_idx:d_idx+num_frame_testing, ...].add_(out_clip)
W[:, d_idx:d_idx+num_frame_testing, ...].add_(out_clip_mask)
output = E.div_(W)
else:
# test as one clip (the whole video) if you have enough memory
window_size = args.window_size
d_old = lq.size(1)
d_pad = (window_size[0] - d_old % window_size[0]) % window_size[0]
lq = torch.cat([lq, torch.flip(lq[:, -d_pad:, ...], [1])], 1) if d_pad else lq
output = test_clip(lq, model, args)
output = output[:, :d_old, :, :, :]
return output
def test_clip(lq, model, args):
''' test the clip as a whole or as patches. '''
sf = args.scale
window_size = args.window_size
size_patch_testing = args.tile[1]
assert size_patch_testing % window_size[-1] == 0, 'testing patch size should be a multiple of window_size.'
if size_patch_testing:
# divide the clip to patches (spatially only, tested patch by patch)
overlap_size = args.tile_overlap[1]
not_overlap_border = True
# test patch by patch
b, d, c, h, w = lq.size()
c = c - 1 if args.nonblind_denoising else c
stride = size_patch_testing - overlap_size
h_idx_list = list(range(0, h-size_patch_testing, stride)) + [max(0, h-size_patch_testing)]
w_idx_list = list(range(0, w-size_patch_testing, stride)) + [max(0, w-size_patch_testing)]
E = torch.zeros(b, d, c, h*sf, w*sf)
W = torch.zeros_like(E)
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = lq[..., h_idx:h_idx+size_patch_testing, w_idx:w_idx+size_patch_testing]
out_patch = model(in_patch).detach().cpu()
out_patch_mask = torch.ones_like(out_patch)
if not_overlap_border:
if h_idx < h_idx_list[-1]:
out_patch[..., -overlap_size//2:, :] *= 0
out_patch_mask[..., -overlap_size//2:, :] *= 0
if w_idx < w_idx_list[-1]:
out_patch[..., :, -overlap_size//2:] *= 0
out_patch_mask[..., :, -overlap_size//2:] *= 0
if h_idx > h_idx_list[0]:
out_patch[..., :overlap_size//2, :] *= 0
out_patch_mask[..., :overlap_size//2, :] *= 0
if w_idx > w_idx_list[0]:
out_patch[..., :, :overlap_size//2] *= 0
out_patch_mask[..., :, :overlap_size//2] *= 0
E[..., h_idx*sf:(h_idx+size_patch_testing)*sf, w_idx*sf:(w_idx+size_patch_testing)*sf].add_(out_patch)
W[..., h_idx*sf:(h_idx+size_patch_testing)*sf, w_idx*sf:(w_idx+size_patch_testing)*sf].add_(out_patch_mask)
output = E.div_(W)
else:
_, _, _, h_old, w_old = lq.size()
h_pad = (window_size[1] - h_old % window_size[1]) % window_size[1]
w_pad = (window_size[2] - w_old % window_size[2]) % window_size[2]
lq = torch.cat([lq, torch.flip(lq[:, :, :, -h_pad:, :], [3])], 3) if h_pad else lq
lq = torch.cat([lq, torch.flip(lq[:, :, :, :, -w_pad:], [4])], 4) if w_pad else lq
output = model(lq).detach().cpu()
output = output[:, :, :, :h_old*sf, :w_old*sf]
return output
if __name__ == '__main__':
main()