-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy patheval_smoothnet.py
68 lines (54 loc) · 2.47 KB
/
eval_smoothnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import torch
from lib.dataset import find_dataset_using_name
from lib.models.smoothnet import SmoothNet
from lib.core.evaluate import Evaluator
from torch.utils.data import DataLoader
from lib.utils.utils import prepare_output_dir, worker_init_fn
from lib.core.evaluate_config import parse_args
def main(cfg):
test_datasets=[]
all_estimator=cfg.ESTIMATOR.split(",")
all_body_representation=cfg.BODY_REPRESENTATION.split(",")
all_dataset=cfg.DATASET_NAME.split(",")
for dataset_index in range(len(all_dataset)):
estimator=all_estimator[dataset_index]
body_representation=all_body_representation[dataset_index]
dataset=all_dataset[dataset_index]
dataset_class = find_dataset_using_name(dataset)
print("Loading dataset ("+str(dataset_index)+")......")
test_datasets.append(dataset_class(cfg,
estimator=estimator,
return_type=body_representation,
phase='test'))
test_loader=[]
for test_dataset in test_datasets:
test_loader.append(DataLoader(dataset=test_dataset,
batch_size=1,
shuffle=False,
num_workers=cfg.TRAIN.WORKERS_NUM,
pin_memory=True,
worker_init_fn=worker_init_fn))
model = SmoothNet(window_size=cfg.MODEL.SLIDE_WINDOW_SIZE,
output_size=cfg.MODEL.SLIDE_WINDOW_SIZE,
hidden_size=cfg.MODEL.HIDDEN_SIZE,
res_hidden_size=cfg.MODEL.RES_HIDDEN_SIZE,
num_blocks=cfg.MODEL.NUM_BLOCK,
dropout=cfg.MODEL.DROPOUT).to(cfg.DEVICE)
if cfg.EVALUATE.PRETRAINED != '' and os.path.isfile(
cfg.EVALUATE.PRETRAINED):
checkpoint = torch.load(cfg.EVALUATE.PRETRAINED)
performance = checkpoint['performance']
model.load_state_dict(checkpoint['state_dict'])
print(f'==> Loaded pretrained model from {cfg.EVALUATE.PRETRAINED}...')
else:
print(f'{cfg.EVALUATE.PRETRAINED} is not a pretrained model!!!!')
exit()
evaluator = Evaluator(model=model, test_loader=test_loader, cfg=cfg)
evaluator.calculate_flops()
evaluator.calculate_parameter_number()
evaluator.run()
if __name__ == '__main__':
cfg, cfg_file = parse_args()
cfg = prepare_output_dir(cfg, cfg_file)
main(cfg)