-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy patheval_coco.py
486 lines (410 loc) · 17.8 KB
/
eval_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
"""Evaluation on COCO data."""
import argparse
import json
import logging
import os
import sys
import time
import zipfile
import numpy as np
import PIL
import thop
import torch
try:
import pycocotools.coco
from pycocotools.cocoeval import COCOeval
# monkey patch for Python 3 compat
pycocotools.coco.unicode = str
except ImportError:
pass
from .annotation import Annotation, AnnotationDet
from .datasets.constants import COCO_KEYPOINTS, COCO_PERSON_SKELETON, COCO_CATEGORIES
from . import datasets, decoder, network, show, transforms, visualizer, __version__
ANNOTATIONS_VAL = 'data-mscoco/annotations/person_keypoints_val2017.json'
DET_ANNOTATIONS_VAL = 'data-mscoco/annotations/instances_val2017.json'
IMAGE_DIR_VAL = 'data-mscoco/images/val2017/'
ANNOTATIONS_TESTDEV = 'data-mscoco/annotations/image_info_test-dev2017.json'
ANNOTATIONS_TEST = 'data-mscoco/annotations/image_info_test2017.json'
IMAGE_DIR_TEST = 'data-mscoco/images/test2017/'
LOG = logging.getLogger(__name__)
class EvalCoco():
def __init__(self, coco, processor, *,
max_per_image=20,
category_ids=None,
iou_type='keypoints',
small_threshold=0.0):
if category_ids is None:
category_ids = [1]
self.coco = coco
self.processor = processor
self.max_per_image = max_per_image
self.category_ids = category_ids
self.iou_type = iou_type
self.small_threshold = small_threshold
self.predictions = []
self.image_ids = []
self.eval = None
self.decoder_time = 0.0
self.nn_time = 0.0
LOG.debug('max = %d, category ids = %s, iou_type = %s',
self.max_per_image, self.category_ids, self.iou_type)
def stats(self, predictions=None, image_ids=None):
# from pycocotools.cocoeval import COCOeval
if predictions is None:
predictions = self.predictions
if image_ids is None:
image_ids = self.image_ids
coco_eval = self.coco.loadRes(predictions)
self.eval = COCOeval(self.coco, coco_eval, iouType=self.iou_type)
LOG.info('cat_ids: %s', self.category_ids)
if self.category_ids:
self.eval.params.catIds = self.category_ids
if image_ids is not None:
print('image ids', image_ids)
self.eval.params.imgIds = image_ids
self.eval.evaluate()
self.eval.accumulate()
self.eval.summarize()
return self.eval.stats
@staticmethod
def count_ops(model, height=641, width=641):
device = next(model.parameters()).device
dummy_input = torch.randn(1, 3, height, width, device=device)
gmacs, params = thop.profile(model, inputs=(dummy_input, ))
LOG.info('GMACs = {0:.2f}, million params = {1:.2f}'.format(gmacs / 1e9, params / 1e6))
return gmacs, params
@staticmethod
def view_annotations(meta, predictions, ground_truth):
annotation_painter = show.AnnotationPainter()
with open(os.path.join(IMAGE_DIR_VAL, meta['file_name']), 'rb') as f:
cpu_image = PIL.Image.open(f).convert('RGB')
with show.image_canvas(cpu_image) as ax:
annotation_painter.annotations(ax, predictions)
if ground_truth:
with show.image_canvas(cpu_image) as ax:
show.white_screen(ax)
annotation_painter.annotations(ax, ground_truth, color='grey')
annotation_painter.annotations(ax, predictions)
def from_predictions(self, predictions, meta, debug=False, gt=None):
image_id = int(meta['image_id'])
self.image_ids.append(image_id)
predictions = transforms.Preprocess.annotations_inverse(predictions, meta)
if self.small_threshold:
predictions = [pred for pred in predictions
if pred.scale(v_th=0.01) >= self.small_threshold]
if len(predictions) > self.max_per_image:
predictions = predictions[:self.max_per_image]
if debug:
gt_anns = []
for g in gt:
if 'bbox' in g:
gt_anns.append(
AnnotationDet(COCO_CATEGORIES).set(g['category_id'] - 1, None, g['bbox'])
)
if 'keypoints' in g:
gt_anns.append(
Annotation(COCO_KEYPOINTS, COCO_PERSON_SKELETON)
.set(g['keypoints'], fixed_score=None)
)
gt_anns = transforms.Preprocess.annotations_inverse(gt_anns, meta)
self.view_annotations(meta, predictions, gt_anns)
image_annotations = []
for pred in predictions:
pred_data = pred.json_data()
pred_data['image_id'] = image_id
pred_data = {
k: v for k, v in pred_data.items()
if k in ('category_id', 'score', 'keypoints', 'bbox', 'image_id')
}
image_annotations.append(pred_data)
# force at least one annotation per image (for pycocotools)
if not image_annotations:
image_annotations.append({
'image_id': image_id,
'category_id': 1,
'keypoints': np.zeros((17*3,)).tolist(),
'bbox': [0, 0, 1, 1],
'score': 0.001,
})
if debug:
self.stats(image_annotations, [image_id])
LOG.debug(meta)
self.predictions += image_annotations
def write_predictions(self, filename):
predictions = [
{k: v for k, v in annotation.items()
if k in ('image_id', 'category_id', 'keypoints', 'score')}
for annotation in self.predictions
]
with open(filename + '.pred.json', 'w') as f:
json.dump(predictions, f)
LOG.info('wrote %s.pred.json', filename)
with zipfile.ZipFile(filename + '.zip', 'w') as myzip:
myzip.write(filename + '.pred.json', arcname='predictions.json')
LOG.info('wrote %s.zip', filename)
def default_output_name(args):
output = '{}.evalcoco-{}edge{}'.format(
args.checkpoint,
'{}-'.format(args.dataset) if args.dataset != 'val' else '',
args.long_edge,
)
if args.n:
output += '-samples{}'.format(args.n)
if not args.force_complete_pose:
output += '-noforcecompletepose'
if args.orientation_invariant or args.extended_scale:
output += '-'
if args.orientation_invariant:
output += 'o'
if args.extended_scale:
output += 's'
if args.two_scale:
output += '-twoscale'
if args.multi_scale:
output += '-multiscale'
if args.multi_scale_hflip:
output += 'whflip'
return output
class CustomFormatter(argparse.ArgumentDefaultsHelpFormatter,
argparse.RawDescriptionHelpFormatter):
pass
def cli(): # pylint: disable=too-many-statements,too-many-branches
parser = argparse.ArgumentParser(
prog='python3 -m openpifpaf.eval_coco',
description=__doc__,
formatter_class=CustomFormatter,
)
parser.add_argument('--version', action='version',
version='OpenPifPaf {version}'.format(version=__version__))
network.cli(parser)
decoder.cli(parser, force_complete_pose=True)
show.cli(parser)
visualizer.cli(parser)
parser.add_argument('--output', default=None,
help='output filename without file extension')
parser.add_argument('--detection-annotations', default=False, action='store_true')
parser.add_argument('-n', default=0, type=int,
help='number of batches')
parser.add_argument('--skip-n', default=0, type=int,
help='skip n batches')
parser.add_argument('--dataset', choices=('val', 'test', 'test-dev'), default='val',
help='dataset to evaluate')
parser.add_argument('--min-ann', default=0, type=int,
help='minimum number of truth annotations')
parser.add_argument('--batch-size', default=1, type=int,
help='batch size')
parser.add_argument('--long-edge', default=641, type=int,
help='long edge of input images. Setting to zero deactivates scaling.')
parser.add_argument('--loader-workers', default=None, type=int,
help='number of workers for data loading')
parser.add_argument('--orientation-invariant', default=False, action='store_true')
parser.add_argument('--extended-scale', default=False, action='store_true')
parser.add_argument('--skip-existing', default=False, action='store_true',
help='skip if output eval file exists already')
parser.add_argument('--disable-cuda', action='store_true',
help='disable CUDA')
parser.add_argument('--write-predictions', default=False, action='store_true',
help='write a json and a zip file of the predictions')
parser.add_argument('--all-images', default=False, action='store_true',
help='run over all images irrespective of catIds')
group = parser.add_argument_group('logging')
group.add_argument('--debug', default=False, action='store_true',
help='print debug messages')
group.add_argument('--debug-images', default=False, action='store_true',
help='print debug messages and enable all debug images')
group.add_argument('--log-stats', default=False, action='store_true',
help='enable stats logging')
args = parser.parse_args()
if args.debug_images:
args.debug = True
log_level = logging.INFO if not args.debug else logging.DEBUG
if args.log_stats:
# pylint: disable=import-outside-toplevel
from pythonjsonlogger import jsonlogger
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setFormatter(
jsonlogger.JsonFormatter('(message) (levelname) (name)'))
logging.basicConfig(handlers=[stdout_handler])
logging.getLogger('openpifpaf').setLevel(log_level)
logging.getLogger('openpifpaf.stats').setLevel(logging.DEBUG)
LOG.setLevel(log_level)
else:
logging.basicConfig()
logging.getLogger('openpifpaf').setLevel(log_level)
LOG.setLevel(log_level)
network.configure(args)
show.configure(args)
visualizer.configure(args)
if args.loader_workers is None:
args.loader_workers = max(2, args.batch_size)
if args.dataset == 'val' and not args.detection_annotations:
args.image_dir = IMAGE_DIR_VAL
args.annotation_file = ANNOTATIONS_VAL
elif args.dataset == 'val' and args.detection_annotations:
args.image_dir = IMAGE_DIR_VAL
args.annotation_file = DET_ANNOTATIONS_VAL
elif args.dataset == 'test':
args.image_dir = IMAGE_DIR_TEST
args.annotation_file = ANNOTATIONS_TEST
elif args.dataset == 'test-dev':
args.image_dir = IMAGE_DIR_TEST
args.annotation_file = ANNOTATIONS_TESTDEV
else:
raise Exception
if args.dataset in ('test', 'test-dev') and not args.write_predictions and not args.debug:
raise Exception('have to use --write-predictions for this dataset')
if args.dataset in ('test', 'test-dev') and not args.all_images and not args.debug:
raise Exception('have to use --all-images for this dataset')
# add args.device
args.device = torch.device('cpu')
args.pin_memory = False
if not args.disable_cuda and torch.cuda.is_available():
args.device = torch.device('cuda')
args.pin_memory = True
LOG.debug('neural network device: %s', args.device)
# generate a default output filename
if args.output is None:
args.output = default_output_name(args)
return args
def write_evaluations(eval_coco, filename, args, total_time, count_ops, file_size):
if args.write_predictions:
eval_coco.write_predictions(filename)
n_images = len(eval_coco.image_ids)
if args.dataset not in ('test', 'test-dev'):
stats = eval_coco.stats()
np.savetxt(filename + '.txt', stats)
with open(filename + '.stats.json', 'w') as f:
json.dump({
'stats': stats.tolist(),
'n_images': n_images,
'decoder_time': eval_coco.decoder_time,
'nn_time': eval_coco.nn_time,
'total_time': total_time,
'checkpoint': args.checkpoint,
'count_ops': count_ops,
'file_size': file_size,
}, f)
else:
print('given dataset does not have ground truth, so no stats summary')
print('n images = {}'.format(n_images))
print('decoder time = {:.1f}s ({:.0f}ms / image)'
''.format(eval_coco.decoder_time, 1000 * eval_coco.decoder_time / n_images))
print('nn time = {:.1f}s ({:.0f}ms / image)'
''.format(eval_coco.nn_time, 1000 * eval_coco.nn_time / n_images))
print('total time = {:.1f}s ({:.0f}ms / image)'
''.format(total_time, 1000 * total_time / n_images))
def preprocess_factory(
long_edge,
*,
tight_padding=False,
extended_scale=False,
orientation_invariant=False,
):
preprocess = [transforms.NormalizeAnnotations()]
if extended_scale:
assert long_edge
preprocess += [
transforms.DeterministicEqualChoice([
transforms.RescaleAbsolute(long_edge),
transforms.RescaleAbsolute((long_edge - 1) // 2 + 1),
], salt=1)
]
elif long_edge:
preprocess += [transforms.RescaleAbsolute(long_edge)]
if tight_padding:
preprocess += [transforms.CenterPadTight(16)]
else:
assert long_edge
preprocess += [transforms.CenterPad(long_edge)]
if orientation_invariant:
preprocess += [
transforms.DeterministicEqualChoice([
None,
transforms.RotateBy90(fixed_angle=90),
transforms.RotateBy90(fixed_angle=180),
transforms.RotateBy90(fixed_angle=270),
], salt=3)
]
preprocess += [transforms.EVAL_TRANSFORM]
return transforms.Compose(preprocess)
def dataloader_from_args(args):
preprocess = preprocess_factory(
args.long_edge,
tight_padding=args.batch_size == 1 and not args.multi_scale,
extended_scale=args.extended_scale,
orientation_invariant=args.orientation_invariant,
)
data = datasets.Coco(
image_dir=args.image_dir,
ann_file=args.annotation_file,
preprocess=preprocess,
image_filter='all' if args.all_images else 'annotated',
category_ids=[] if args.detection_annotations else [1],
)
data_loader = torch.utils.data.DataLoader(
data, batch_size=args.batch_size, pin_memory=args.pin_memory,
num_workers=args.loader_workers,
collate_fn=datasets.collate_images_anns_meta)
return data_loader
def main():
args = cli()
# skip existing?
if args.skip_existing:
if os.path.exists(args.output + '.stats.json'):
print('Output file {} exists already. Exiting.'
''.format(args.output + '.stats.json'))
return
print('Processing: {}'.format(args.checkpoint))
data_loader = dataloader_from_args(args)
model_cpu, _ = network.factory_from_args(args)
model = model_cpu.to(args.device)
if not args.disable_cuda and torch.cuda.device_count() > 1:
LOG.info('Using multiple GPUs: %d', torch.cuda.device_count())
model = torch.nn.DataParallel(model)
model.base_net = model_cpu.base_net
model.head_nets = model_cpu.head_nets
processor = decoder.factory_from_args(args, model)
# processor.instance_scorer = decocder.instance_scorer.InstanceScoreRecorder()
# processor.instance_scorer = torch.load('instance_scorer.pkl')
coco = pycocotools.coco.COCO(args.annotation_file)
eval_coco = EvalCoco(
coco,
processor,
max_per_image=100 if args.detection_annotations else 20,
category_ids=[] if args.detection_annotations else [1],
iou_type='bbox' if args.detection_annotations else 'keypoints',
)
total_start = time.time()
loop_start = time.time()
for batch_i, (image_tensors, anns_batch, meta_batch) in enumerate(data_loader):
LOG.info('batch %d, last loop: %.3fs, batches per second=%.1f',
batch_i, time.time() - loop_start,
batch_i / max(1, (time.time() - total_start)))
if batch_i < args.skip_n:
continue
if args.n and batch_i >= args.n:
break
loop_start = time.time()
if len([a
for anns in anns_batch
for a in anns
if np.any(a['keypoints'][:, 2] > 0)]) < args.min_ann:
continue
pred_batch = processor.batch(model, image_tensors, device=args.device)
eval_coco.decoder_time += processor.last_decoder_time
eval_coco.nn_time += processor.last_nn_time
# loop over batch
assert len(image_tensors) == len(anns_batch)
assert len(image_tensors) == len(meta_batch)
for pred, anns, meta in zip(pred_batch, anns_batch, meta_batch):
eval_coco.from_predictions(pred, meta, debug=args.debug, gt=anns)
total_time = time.time() - total_start
# processor.instance_scorer.write_data('instance_score_data.json')
# model stats
count_ops = list(eval_coco.count_ops(model_cpu))
local_checkpoint = network.local_checkpoint_path(args.checkpoint)
file_size = os.path.getsize(local_checkpoint) if local_checkpoint else -1.0
# write
write_evaluations(eval_coco, args.output, args, total_time, count_ops, file_size)
if __name__ == '__main__':
main()