把 n 个骰子扔在地上,所有骰子朝上一面的点数之和为 s。输入 n,打印出 s 的所有可能的值出现的概率。
你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。
示例 1:
输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]
示例 2:
输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]
限制:
1 <= n <= 11
动态规划求解。
扔 n 个骰子,点数之和的范围在 [n, 6n]
之间,总共有 5n+1
种,即为最后结果数组的长度。
假设 dp[i][j]
表示扔 i 个骰子,出现点数之和 j 的次数。n 个骰子,所以 i 的范围在 1~n
,j 的范围在 [1, 6n]
。
单看第 n 枚骰子,它的点数可能为 1,2,3,...,6
,因此扔完 n 枚骰子后点数之和 j 出现的次数,可以由扔完 n-1 枚骰子后,对应点数 j−1,j−2,j−3,...,j−6
出现的次数之和转化过来。即:
for (第n枚骰子的点数 i = 1; i <= 6; i ++) {
dp[n][j] += dp[n-1][j - i]
}
扔 1 枚骰子,点数可能是 1,2,3,4,5,6
,且每个点数出现的次数均为 1。所以初始化如下:
for (int j = 1; j <= 6; ++j) {
dp[1][j] = 1;
}
class Solution:
def twoSum(self, n: int) -> List[float]:
dp = [[0 for _ in range(6 * n + 1)] for _ in range(n + 1)]
for j in range(1, 7):
dp[1][j] = 1
for i in range(2, n + 1):
for j in range(i, 6 * i + 1):
for k in range(1, 7):
if j <= k:
break
dp[i][j] += dp[i - 1][j - k]
res, total = [], pow(6, n)
for i in range(5 * n + 1):
res.append(dp[n][n + i] / total)
return res
class Solution {
public double[] twoSum(int n) {
int[][] dp = new int[n + 1][6 * n + 1];
for (int j = 1; j <= 6; ++j) {
dp[1][j] = 1;
}
for (int i = 2; i <= n; ++i) {
for (int j = i; j <= 6 * i; ++j) {
for (int k = 1; k <= 6 && j > k; ++k) {
dp[i][j] += dp[i - 1][j - k];
}
}
}
double[] res = new double[5 * n + 1];
double all = Math.pow(6, n);
for (int i = 0; i <= 5 * n; ++i) {
res[i] = dp[n][n + i] * 1.0 / all;
}
return res;
}
}
/**
* @param {number} n
* @return {number[]}
*/
var twoSum = function (n) {
function backtrack(sum, time) {
if (time === n) {
res[sum]++;
return;
}
for (let i = 1; i <= 6; i++) {
backtrack(sum + i, time + 1);
}
}
let len = n * 6;
let t = 6 ** n;
let res = new Array(len + 1).fill(0);
backtrack(0, 0);
return res.slice(n).map((e) => e / t);
};
func dicesProbability(n int) []float64 {
dp := make([]float64, 7)
for i := 1; i <= 6; i++ {
dp[i] = 1.0 / 6.0
}
for i := 2; i <= n; i++ {
n := len(dp)
tmp := make([]float64, 6*i+1)
for j := 0; j < n; j++ {
for k := 1; k <= 6; k++ {
tmp[j+k] += dp[j] / 6.0
}
}
dp = tmp
}
return dp[n:]
}