-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_report.py
361 lines (326 loc) · 12.1 KB
/
create_report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
"""Renders the evaluation results into an HTML report with various plots and tables."""
import argparse
import os
import pandas as pd
from drevalpy.visualization import (
CorrelationComparisonScatter,
CriticalDifferencePlot,
Heatmap,
HTMLTable,
RegressionSliderPlot,
Violin,
)
from drevalpy.visualization.utils import create_html, create_index_html, parse_results, prep_results, write_results
def create_output_directories(custom_id: str) -> None:
"""
If they do not exist yet, make directories for the visualization files.
:param custom_id: run id passed via command line
"""
os.makedirs(f"results/{custom_id}/violin_plots", exist_ok=True)
os.makedirs(f"results/{custom_id}/heatmaps", exist_ok=True)
os.makedirs(f"results/{custom_id}/regression_plots", exist_ok=True)
os.makedirs(f"results/{custom_id}/corr_comp_scatter", exist_ok=True)
os.makedirs(f"results/{custom_id}/html_tables", exist_ok=True)
os.makedirs(f"results/{custom_id}/critical_difference_plots", exist_ok=True)
def draw_setting_plots(
lpo_lco_ldo: str,
ev_res: pd.DataFrame,
ev_res_per_drug: pd.DataFrame,
ev_res_per_cell_line: pd.DataFrame,
custom_id: str,
) -> list[str]:
"""
Draw all plots for a specific setting (LPO, LCO, LDO).
:param lpo_lco_ldo: setting
:param ev_res: overall evaluation results
:param ev_res_per_drug: evaluation results per drug
:param ev_res_per_cell_line: evaluation results per cell line
:param custom_id: run id passed via command line
:returns: list of unique algorithms
"""
ev_res_subset = ev_res[ev_res["LPO_LCO_LDO"] == lpo_lco_ldo]
# PIPELINE: SAVE_TABLES
html_table = HTMLTable(
df=ev_res_subset,
group_by="all",
)
html_table.draw_and_save(out_prefix=f"results/{custom_id}/html_tables/", out_suffix=lpo_lco_ldo)
# only draw figures for 'real' predictions comparing all models
eval_results_preds = ev_res_subset[ev_res_subset["rand_setting"] == "predictions"]
# PIPELINE: DRAW_CRITICAL_DIFFERENCE
cd_plot = CriticalDifferencePlot(eval_results_preds=eval_results_preds, metric="MSE")
cd_plot.draw_and_save(
out_prefix=f"results/{custom_id}/critical_difference_plots/",
out_suffix=lpo_lco_ldo,
)
# PIPELINE: DRAW_VIOLIN_AND_HEATMAP
for plt_type in ["violinplot", "heatmap"]:
if plt_type == "violinplot":
out_dir = "violin_plots"
else:
out_dir = "heatmaps"
for normalized in [False, True]:
if normalized:
out_suffix = f"algorithms_{lpo_lco_ldo}_normalized"
else:
out_suffix = f"algorithms_{lpo_lco_ldo}"
if plt_type == "violinplot":
out_plot = Violin(
df=eval_results_preds,
normalized_metrics=normalized,
whole_name=False,
)
else:
out_plot = Heatmap(
df=eval_results_preds,
normalized_metrics=normalized,
whole_name=False,
)
out_plot.draw_and_save(
out_prefix=f"results/{custom_id}/{out_dir}/",
out_suffix=out_suffix,
)
# per group plots
if lpo_lco_ldo in ("LPO", "LCO"):
draw_per_grouping_setting_plots(
grouping="drug",
ev_res_per_group=ev_res_per_drug,
lpo_lco_ldo=lpo_lco_ldo,
custom_id=custom_id,
)
if lpo_lco_ldo in ("LPO", "LDO"):
draw_per_grouping_setting_plots(
grouping="cell_line",
ev_res_per_group=ev_res_per_cell_line,
lpo_lco_ldo=lpo_lco_ldo,
custom_id=custom_id,
)
return eval_results_preds["algorithm"].unique()
def draw_per_grouping_setting_plots(
grouping: str, ev_res_per_group: pd.DataFrame, lpo_lco_ldo: str, custom_id: str
) -> None:
"""
Draw plots for a specific grouping (drug or cell line) for a specific setting (LPO, LCO, LDO).
:param grouping: drug or cell_line
:param ev_res_per_group: evaluation results per drug or per cell line
:param lpo_lco_ldo: setting
:param custom_id: run id passed over command line
"""
# PIPELINE: DRAW_CORR_COMP
corr_comp = CorrelationComparisonScatter(
df=ev_res_per_group,
color_by=grouping,
lpo_lco_ldo=lpo_lco_ldo,
algorithm="all",
)
if corr_comp.name is not None:
corr_comp.draw_and_save(
out_prefix=f"results/{custom_id}/corr_comp_scatter/",
out_suffix=corr_comp.name,
)
evaluation_results_per_group_subs = ev_res_per_group[ev_res_per_group["LPO_LCO_LDO"] == lpo_lco_ldo]
# PIPELINE: SAVE_TABLES
html_table = HTMLTable(
df=evaluation_results_per_group_subs,
group_by=grouping,
)
html_table.draw_and_save(
out_prefix=f"results/{custom_id}/html_tables/",
out_suffix=f"{grouping}_{lpo_lco_ldo}",
)
def draw_algorithm_plots(
model: str,
ev_res: pd.DataFrame,
ev_res_per_drug: pd.DataFrame,
ev_res_per_cell_line: pd.DataFrame,
t_vs_p: pd.DataFrame,
lpo_lco_ldo: str,
custom_id: str,
) -> None:
"""
Draw all plots for a specific algorithm.
:param model: name of the model/algorithm
:param ev_res: overall evaluation results
:param ev_res_per_drug: evaluation results per drug
:param ev_res_per_cell_line: evaluation results per cell line
:param t_vs_p: true response values vs. predicted response values
:param lpo_lco_ldo: setting
:param custom_id: run id passed via command line
"""
eval_results_algorithm = ev_res[(ev_res["LPO_LCO_LDO"] == lpo_lco_ldo) & (ev_res["algorithm"] == model)]
# PIPELINE: DRAW_VIOLIN_AND_HEATMAP
for plt_type in ["violinplot", "heatmap"]:
if plt_type == "violinplot":
out_dir = "violin_plots"
out_plot = Violin(
df=eval_results_algorithm,
normalized_metrics=False,
whole_name=True,
)
else:
out_dir = "heatmaps"
out_plot = Heatmap(
df=eval_results_algorithm,
normalized_metrics=False,
whole_name=True,
)
out_plot.draw_and_save(
out_prefix=f"results/{custom_id}/{out_dir}/",
out_suffix=f"{model}_{lpo_lco_ldo}",
)
if lpo_lco_ldo in ("LPO", "LCO"):
draw_per_grouping_algorithm_plots(
grouping_slider="cell_line",
grouping_scatter_table="drug",
model=model,
ev_res_per_group=ev_res_per_drug,
t_v_p=t_vs_p,
lpo_lco_ldo=lpo_lco_ldo,
custom_id=custom_id,
)
if lpo_lco_ldo in ("LPO", "LDO"):
draw_per_grouping_algorithm_plots(
grouping_slider="drug",
grouping_scatter_table="cell_line",
model=model,
ev_res_per_group=ev_res_per_cell_line,
t_v_p=t_vs_p,
lpo_lco_ldo=lpo_lco_ldo,
custom_id=custom_id,
)
def draw_per_grouping_algorithm_plots(
grouping_slider: str,
grouping_scatter_table: str,
model: str,
ev_res_per_group: pd.DataFrame,
t_v_p: pd.DataFrame,
lpo_lco_ldo: str,
custom_id: str,
):
"""
Draw plots for a specific grouping (drug or cell line) for a specific algorithm.
:param grouping_slider: the grouping variable for the regression plots
:param grouping_scatter_table: the grouping variable for the scatter plots.
If grouping_slider is drug, this should be cell_line and vice versa
:param model: name of the model/algorithm
:param ev_res_per_group: evaluation results per drug or per cell line
:param t_v_p: true response values vs. predicted response values
:param lpo_lco_ldo: setting
:param custom_id: run id passed via command line
"""
# PIPELINE: DRAW_CORR_COMP
corr_comp = CorrelationComparisonScatter(
df=ev_res_per_group,
color_by=grouping_scatter_table,
lpo_lco_ldo=lpo_lco_ldo,
algorithm=model,
)
if corr_comp.name is not None:
corr_comp.draw_and_save(
out_prefix=f"results/{custom_id}/corr_comp_scatter/",
out_suffix=corr_comp.name,
)
# PIPELINE: DRAW_REGRESSION
for normalize in [False, True]:
name_suffix = "_normalized" if normalize else ""
name = f"{lpo_lco_ldo}_{grouping_slider}{name_suffix}"
regr_slider = RegressionSliderPlot(
df=t_v_p,
lpo_lco_ldo=lpo_lco_ldo,
model=model,
group_by=grouping_slider,
normalize=normalize,
)
regr_slider.draw_and_save(
out_prefix=f"results/{custom_id}/regression_plots/",
out_suffix=f"{name}_{model}",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate reports from evaluation results")
parser.add_argument("--run_id", required=True, help="Run ID for the current execution")
args = parser.parse_args()
run_id = args.run_id
# assert that the run_id folder exists
if not os.path.exists(f"results/{run_id}"):
raise AssertionError(f"Folder results/{run_id} does not exist. The pipeline has to be run first.")
# not part of pipeline
(
evaluation_results,
evaluation_results_per_drug,
evaluation_results_per_cell_line,
true_vs_pred,
) = parse_results(path_to_results=f"results/{run_id}")
# part of pipeline: EVALUATE_FINAL, COLLECT_RESULTS
(
evaluation_results,
evaluation_results_per_drug,
evaluation_results_per_cell_line,
true_vs_pred,
) = prep_results(
evaluation_results,
evaluation_results_per_drug,
evaluation_results_per_cell_line,
true_vs_pred,
)
write_results(
path_out=f"results/{run_id}/",
eval_results=evaluation_results,
eval_results_per_drug=evaluation_results_per_drug,
eval_results_per_cl=evaluation_results_per_cell_line,
t_vs_p=true_vs_pred,
)
"""
For debugging:
evaluation_results = pd.read_csv(
f'results/{run_id}/evaluation_results.csv', index_col=0
)
evaluation_results_per_drug = pd.read_csv(
f'results/{run_id}/evaluation_results_per_drug.csv', index_col=0
)
evaluation_results_per_cell_line = None
true_vs_pred = pd.read_csv(
f'results/{run_id}/true_vs_pred.csv', index_col=0
)
"""
create_output_directories(run_id)
# Start loop over all settings
settings = evaluation_results["LPO_LCO_LDO"].unique()
for setting in settings:
print(f"Generating report for {setting} ...")
unique_algos = draw_setting_plots(
lpo_lco_ldo=setting,
ev_res=evaluation_results,
ev_res_per_drug=evaluation_results_per_drug,
ev_res_per_cell_line=evaluation_results_per_cell_line,
custom_id=run_id,
)
# draw figures for each algorithm with all randomizations etc
for algorithm in unique_algos:
draw_algorithm_plots(
model=algorithm,
ev_res=evaluation_results,
ev_res_per_drug=evaluation_results_per_drug,
ev_res_per_cell_line=evaluation_results_per_cell_line,
t_vs_p=true_vs_pred,
lpo_lco_ldo=setting,
custom_id=run_id,
)
# get all html files from results/{run_id}
all_files: list[str] = []
for _, _, files in os.walk(f"results/{run_id}"): # type: ignore[assignment]
for file in files:
if file.endswith(".html") and file not in ["index.html", "LPO.html", "LCO.html", "LDO.html"]:
all_files.append(file)
# PIPELINE: WRITE_HTML
create_html(
run_id=run_id,
lpo_lco_ldo=setting,
files=all_files,
prefix_results=f"results/{run_id}",
)
# PIPELINE: WRITE_INDEX
create_index_html(
custom_id=run_id,
test_modes=settings,
prefix_results=f"results/{run_id}",
)