-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFirstClassifier.py
53 lines (35 loc) · 1.18 KB
/
FirstClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from scipy.spatial import distance
def euc(a, b):
return distance.euclidean(a, b)
class MyKNN():
def fit(self, X_train, y_train):
self.X_train = X_train
self.y_train = y_train
def predict(self, X_test):
predictions = []
for row in X_test:
label = self.closest(row)
predictions.append(label)
return predictions
def closest(self, row):
best_dist = euc(row, self.X_train[0])
best_index = 0
for i in range(1, len(self.X_train)):
dist = euc(row, self.X_train[i])
if dist < best_dist:
best_dist = dist
best_index = i
return self.y_train[best_index]
# from sklearn.neighbors import KNeighborsClassifier
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5)
# using k-neighbors classifier
clf = MyKNN()
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print("Accuracy : ", accuracy_score(y_test, predictions), "%")