-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualization.py
436 lines (357 loc) · 20.5 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import itertools
import argparse
import keras
import matplotlib.pyplot as plt
import numpy as np
import spectral
from keras.engine.saving import load_model
from matplotlib import patches
from sklearn.metrics import classification_report, confusion_matrix
# our utils functions
import compression
import preprocessing
import preprocessing as pp
from deepvizkeras.integrated_gradients import IntegratedGradients
from deepvizkeras.saliency import GradientSaliency
from deepvizkeras.visual_backprop import VisualBackprop
from models import cao, choose_model
def plot_confusion_matrix(cm, classes,
normalize=True,
title='Confusion matrix',
cmap=plt.cm.Oranges):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=90)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
def reports(model, X_test, y_test, target_names):
Y_pred = model.predict(X_test)
y_pred = np.argmax(Y_pred, axis=1)
classification = classification_report(np.argmax(y_test, axis=1), y_pred, target_names=target_names)
confusion = confusion_matrix(np.argmax(y_test, axis=1), y_pred)
cm = confusion
target = y_test
target = np.argmax(target, axis=1)
score = model.evaluate(X_test, y_test, batch_size=32)
test_loss = score[0]*100
test_accuracy = score[1]*100
# Compute global accuracy (overall accuracy)
total = np.sum(cm)
accuracy = sum([cm[x][x] for x in range(len(cm))])
accuracy *= 100 / float(total)
# results["Accuracy"] = accuracy
print("OA: "+str(accuracy))
# Compute average accuracy: "the mean of the percentages of correctly classified pixels for each class"
aa_sum = 0
count = 0
for i in range(len(cm)):
if np.count_nonzero(target==i) != 0:
aa_sum += 100 * cm[i,i] / np.count_nonzero(target==i)
count = count + 1
else:
aa_sum += 0
# results["Average Accuracy"] = aa_sum / count
print("AA: " + str(aa_sum / count))
# Compute kappa coefficient
pa = np.trace(cm) / float(total)
pe = np.sum(np.sum(cm, axis=0) * np.sum(cm, axis=1)) / \
float(total * total)
kappa = (pa - pe) / (1 - pe)
# results["Kappa"] = kappa
print("Kappa: " + str(kappa))
return classification, confusion, test_loss, test_accuracy
def patch(data, height_index, width_index, PATCH_SIZE):
height_slice = slice(height_index, height_index+PATCH_SIZE)
width_slice = slice(width_index, width_index+PATCH_SIZE)
patch = data[height_slice, width_slice, :]
return patch
def create_predicted_image(X, y, model, patch_size, height, width):
outputs = np.zeros((height,width)) # zeroed image
index = 0
for i in range(0, height - patch_size + 1):
if i % 8 == 0 or index == (height - patch_size + 1) - 1:
preprocessing.print_progress_bar(index + 1, (height - patch_size + 1))
index += 1
for j in range(0, width - patch_size + 1):
target = int(y[int(i + patch_size / 2)][int(j + patch_size / 2)])
if target == 0 :
continue
else :
image_patch = patch(X, i, j, patch_size)
#print (image_patch.shape)
X_test_image = image_patch.reshape(1, image_patch.shape[0],image_patch.shape[1], image_patch.shape[2]).astype('float32')#.reshape(1,image_patch.shape[2],image_patch.shape[0],image_patch.shape[1]).astype('float32')
prediction = (model.predict_classes(X_test_image))
outputs[int(i + patch_size / 2)][int(j + patch_size / 2)] = prediction + 1
return outputs
def predict(model, X, X_test, y_test, target_names, classes_authorized, spy_colors, label_dictionary):
classification, confusion, test_loss, test_accuracy = reports(model, X_test, y_test, target_names)
print(classification)
plt.figure(figsize=(13, 10))
plot_confusion_matrix(confusion, classes=target_names,
title='Confusion matrix, without normalization')
X_garbage, train_data, test_data = pp.load_data()
y = np.add(train_data, test_data)
y = pp.delete_useless_classes(y, classes_authorized)
outputs = create_predicted_image(X, y, model, 5, y.shape[0], y.shape[1])
print("PREDICTED IMAGE:")
predict_image = spectral.imshow(classes=outputs.astype(int), figsize=(5, 5))
label_patches = [patches.Patch(color=spy_colors[x] / 255.,
label=label_dictionary[x]) for x in np.unique(y)]
plt.legend(handles=label_patches, ncol=2, fontsize='medium',
loc='upper center', bbox_to_anchor=(0.5, -0.05))
plt.show()
ground_truth = spectral.imshow(classes=y, figsize=(5, 5))
print("IDEAL IMAGE: ")
label_patches = [patches.Patch(color=spy_colors[x] / 255.,
label=label_dictionary[x]) for x in np.unique(y)]
plt.legend(handles=label_patches, ncol=2, fontsize='medium',
loc='upper center', bbox_to_anchor=(0.5, -0.05))
plt.show()
def activation_map(model, X_train, from_band, to_band, step_band):
for layer_number in range(6): # 6 is out of range
from vis.visualization import visualize_activation
grads = visualize_activation(model, layer_idx=layer_number, filter_indices=None, seed_input=X_train, backprop_modifier=None,grad_modifier="absolute")
grads = grads.reshape(grads.shape[2], grads.shape[0], grads.shape[1]) # bands as first dimension
chosen_bands = list(range(from_band, to_band, step_band))
fig, ax = plt.subplots(2, len(chosen_bands))
for chosen_band, index in zip(chosen_bands, range(len(chosen_bands))):
grads_reshaped = grads[chosen_band].reshape((5, 5))
ax[0][index].imshow(grads_reshaped, cmap='gray')
ax[1][index].imshow(grads_reshaped, cmap='jet')
ax[0][index].get_xaxis().set_visible(False)
ax[1][index].get_xaxis().set_visible(False)
ax[0][index].get_yaxis().set_visible(False)
ax[1][index].get_yaxis().set_visible(False)
plt.savefig("activation_map_" + str(from_band) + "_to_" + str(to_band) + "_in_" + str(step_band) + "_layer" + str(
layer_number) + ".png", bbox_inches='tight')
def guided_backpropagation(model, x_train, from_band, to_band, step_band, n_bands):
x_train = x_train.reshape(x_train.shape[0], 5, 5, n_bands, 1).astype('float32')
x_train = x_train / 255.0
import matplotlib.pyplot as plt
img = x_train[0]
for trainable_weight in range(9):
img=img.reshape((5,5,n_bands))
print("trainable weight number: " + str(trainable_weight))
from deepvizkeras.guided_backprop import GuidedBackprop
single = GuidedBackprop(model, trainable_weight, n_bands=n_bands)
grad = single.get_mask(input_image=img)
filter_grad = (grad > 0.0).reshape((5,5,n_bands))
img.reshape((5,5,n_bands))
average_grad = single.get_smoothed_mask(img)
filter_average_grad = (average_grad > 0.0).reshape((5,5,n_bands))
# img.shape is 5,5,n_bands. now choose a band of the n_bands to visualize.
img=img.reshape((n_bands,5,5))
grad_filter_grad = (grad*filter_grad).reshape((n_bands,5,5))
grad=grad.reshape((n_bands,5,5))
average_grad_filter_average_grad = (average_grad*filter_average_grad).reshape((n_bands,5,5))
average_grad=average_grad.reshape((n_bands,5,5))
chosen_bands = list(range(from_band,to_band,step_band))
fig, ax = plt.subplots(5, len(chosen_bands))
for chosen_band, index in zip(chosen_bands, range(len(chosen_bands))):
img_reshaped = img[chosen_band].reshape((5,5))
grad_reshaped = grad[chosen_band].reshape((5, 5))
grad_filter_grad_reshaped = grad_filter_grad[chosen_band].reshape((5,5))
average_grad_filter_average_grad_reshaped = average_grad_filter_average_grad[chosen_band].reshape((5,5))
average_grad_reshaped=average_grad[chosen_band].reshape((5,5))
ax[0][index].imshow(img_reshaped, cmap='gray')
ax[1][index].imshow(grad_filter_grad_reshaped, cmap='gray')
ax[2][index].imshow(average_grad_filter_average_grad_reshaped, cmap='gray')
ax[3][index].imshow(grad_reshaped, cmap='jet')
ax[4][index].imshow(average_grad_reshaped, cmap='jet')
ax[0][index].get_xaxis().set_visible(False)
ax[1][index].get_xaxis().set_visible(False)
ax[2][index].get_xaxis().set_visible(False)
ax[3][index].get_xaxis().set_visible(False)
ax[4][index].get_xaxis().set_visible(False)
ax[0][index].get_yaxis().set_visible(False)
ax[1][index].get_yaxis().set_visible(False)
ax[2][index].get_yaxis().set_visible(False)
ax[3][index].get_yaxis().set_visible(False)
ax[4][index].get_yaxis().set_visible(False)
# plt.show()
plt.savefig("guided_backpropagation_"+str(from_band)+"_to_"+str(to_band)+"_in_"+str(step_band)+"_trainable_weight" + str(trainable_weight)+".png", bbox_inches='tight')
def integrated_gradients(model, n_bands, x_train, from_band, to_band, step_band):
x_train = x_train.reshape(x_train.shape[0], 5, 5, n_bands, 1).astype('float32')
x_train = x_train / 255.0
import matplotlib.pyplot as plt
img = x_train[0]
for trainable_weight in range(9):
print("trainable weight number: " + str(trainable_weight))
single = IntegratedGradients(model, trainable_weight, n_bands)
grad = single.get_grad(img)
filter_grad = (grad > 0.0).reshape((5, 5, n_bands))
img.reshape((5, 5, n_bands))
# img = img.squeeze(axis=3)
# img.shape is 5,5,n_bands. now choose a band of the n_bands to visualize.
img = img.reshape((n_bands, 5, 5))
grad_filter_grad = (grad * filter_grad).reshape((n_bands, 5, 5))
grad = grad.reshape((n_bands, 5, 5))
chosen_bands = list(range(from_band, to_band, step_band))
fig, ax = plt.subplots(3, len(chosen_bands))
for chosen_band, index in zip(chosen_bands, range(len(chosen_bands))):
img_reshaped = img[chosen_band].reshape((5, 5))
grad_reshaped = grad[chosen_band].reshape((5, 5))
grad_filter_grad_reshaped = grad_filter_grad[chosen_band].reshape((5, 5))
ax[0][index].imshow(img_reshaped, cmap='gray')
ax[1][index].imshow(grad_filter_grad_reshaped, cmap='gray')
ax[2][index].imshow(grad_reshaped, cmap='jet')
ax[0][index].get_xaxis().set_visible(False)
ax[1][index].get_xaxis().set_visible(False)
ax[2][index].get_xaxis().set_visible(False)
ax[0][index].get_yaxis().set_visible(False)
ax[1][index].get_yaxis().set_visible(False)
ax[2][index].get_yaxis().set_visible(False)
# plt.show()
plt.savefig("integrated_gradients_" + str(from_band) + "_to_" + str(to_band) + "_in_" + str(step_band) + "_trainable_weight" + str(
trainable_weight) + ".png", bbox_inches='tight')
def visual_backpropagation(model, n_bands, x_train, from_band, to_band, step_band):
x_train = x_train.reshape(x_train.shape[0], 5, 5, n_bands, 1).astype('float32')
x_train = x_train / 255.0
import matplotlib.pyplot as plt
img = x_train[0]
for trainable_weight in range(9):
print("trainable weight number: " + str(trainable_weight))
single = VisualBackprop(model, trainable_weight, n_bands)
img.reshape((5, 5, n_bands))
grad = single.get_mask(img)
filter_grad = (grad > 0.0).reshape((5, 5, n_bands))
# img = img.squeeze(axis=3)
# img.shape is 5,5,n_bands. now choose a band of the n_bands to visualize.
img = img.reshape((n_bands, 5, 5))
grad_filter_grad = (grad * filter_grad).reshape((n_bands, 5, 5))
grad = grad.reshape((n_bands, 5, 5))
chosen_bands = list(range(from_band, to_band, step_band))
fig, ax = plt.subplots(3, len(chosen_bands))
for chosen_band, index in zip(chosen_bands, range(len(chosen_bands))):
img_reshaped = img[chosen_band].reshape((5, 5))
grad_reshaped = grad[chosen_band].reshape((5, 5))
grad_filter_grad_reshaped = grad_filter_grad[chosen_band].reshape((5, 5))
ax[0][index].imshow(img_reshaped, cmap='gray')
ax[1][index].imshow(grad_filter_grad_reshaped, cmap='gray')
ax[2][index].imshow(grad_reshaped, cmap='jet')
ax[0][index].get_xaxis().set_visible(False)
ax[1][index].get_xaxis().set_visible(False)
ax[2][index].get_xaxis().set_visible(False)
ax[0][index].get_yaxis().set_visible(False)
ax[1][index].get_yaxis().set_visible(False)
ax[2][index].get_yaxis().set_visible(False)
# plt.show()
plt.savefig(
"visual_backpropagation_" + str(from_band) + "_to_" + str(to_band) + "_in_" + str(step_band) + "_trainable_weight" + str(
trainable_weight) + ".png", bbox_inches='tight')
def gradients(model, n_bands, x_train, x_test, from_band, to_band, step_band):
x_train = x_train.reshape(x_train.shape[0], 5, 5, n_bands, 1).astype('float32')
x_test = x_test.reshape(x_test.shape[0], 5, 5, n_bands, 1).astype('float32')
x_train = x_train / 255.0
x_test = x_test / 255.0
import matplotlib.pyplot as plt
img = x_train[0]
for trainable_weight in range(9):
print("trainable weight number: " + str(trainable_weight))
single = GradientSaliency(model, trainable_weight, n_bands)
grad = single.get_grad(img)
filter_grad = (grad > 0.0).reshape((5,5,n_bands))
img.reshape((5,5,n_bands))
# img = img.squeeze(axis=3)
average_grad = single.get_smoothed_mask(img)
filter_average_grad = (average_grad > 0.0).reshape((5,5,n_bands))
# img.shape is 5,5,n_bands. now choose a band of the n_bands to visualize.
img=img.reshape((n_bands,5,5))
grad_filter_grad = (grad*filter_grad).reshape((n_bands,5,5))
grad=grad.reshape((n_bands,5,5))
average_grad_filter_average_grad = (average_grad*filter_average_grad).reshape((n_bands,5,5))
average_grad=average_grad.reshape((n_bands,5,5))
chosen_bands = list(range(from_band,to_band,step_band))
fig, ax = plt.subplots(5, len(chosen_bands))
for chosen_band, index in zip(chosen_bands, range(len(chosen_bands))):
img_reshaped = img[chosen_band].reshape((5,5))
grad_reshaped = grad[chosen_band].reshape((5, 5))
grad_filter_grad_reshaped = grad_filter_grad[chosen_band].reshape((5,5))
average_grad_filter_average_grad_reshaped = average_grad_filter_average_grad[chosen_band].reshape((5,5))
average_grad_reshaped=average_grad[chosen_band].reshape((5,5))
ax[0][index].imshow(img_reshaped, cmap='gray')
ax[1][index].imshow(grad_filter_grad_reshaped, cmap='gray')
ax[2][index].imshow(average_grad_filter_average_grad_reshaped, cmap='gray')
ax[3][index].imshow(grad_reshaped, cmap='jet')
ax[4][index].imshow(average_grad_reshaped, cmap='jet')
ax[0][index].get_xaxis().set_visible(False)
ax[1][index].get_xaxis().set_visible(False)
ax[2][index].get_xaxis().set_visible(False)
ax[3][index].get_xaxis().set_visible(False)
ax[4][index].get_xaxis().set_visible(False)
ax[0][index].get_yaxis().set_visible(False)
ax[1][index].get_yaxis().set_visible(False)
ax[2][index].get_yaxis().set_visible(False)
ax[3][index].get_yaxis().set_visible(False)
ax[4][index].get_yaxis().set_visible(False)
# plt.show()
plt.savefig("gradient"+str(from_band)+"_to_"+str(to_band)+"_in_"+str(step_band)+"_trainable_weight" + str(trainable_weight)+".png", bbox_inches='tight')
def get_parser():
parser = argparse.ArgumentParser(description="Visualization of deep learning models for hyperspectral classification")
parser.add_argument("model", default="cao", help="the model to use", choices=["cao"])
parser.add_argument("model_path", metavar="MODEL", help="path or file name of the model to be read for visualization purposes")
image_generation = parser.add_argument_group("Image generation")
image_generation.add_argument("--patch_size", metavar="PSIZE", default=5, help="size of the patch of hyperspectral image band considered", type=int)
image_generation.add_argument("--classes_authorized", metavar="TAKECLASS", default=[2, 3, 5, 6, 10, 0, 11, 12, 14, 15], type=list, help="list of classes to take from the image band - the rest is ignored")
image_generation.add_argument("--num_classes", metavar="TOTALCLASS", default=9, type=int)
image_compression = parser.add_argument_group("Image compression")
image_compression.add_argument("--band_selection", metavar="BSEL", default=None, choices=[None, "PCA", "NMF"],
help="image extraction technique to apply to reduce the number of components")
image_compression.add_argument("--components", metavar="COMP", default=100,
help="number of components for image extraction technique", type=int)
visualization = parser.add_argument_group("Visualization")
visualization.add_argument("visualize", metavar="VIS", help="select the visualization method",
choices=["guided_backprop", "visual_backprop", "gradient", "integrated_gradient", "activation_map"])
visualization.add_argument("--from_band", metavar="FBAND", type=int, default=0, help="image band (inclusive) at which to start showing visualizations")
visualization.add_argument("--to_band", metavar="TBAND", type=int, default=100, help="image band (exclusive) at which to stop showing visualizations")
visualization.add_argument("--step_band", metavar="SBAND", type=int, default=10, help="image band increment for the interval [from_band; to_band)")
return parser
if __name__ == "__main__":
args = get_parser().parse_args()
model_path = args.model_path
patch_size = args.patch_size
classes_authorized = args.classes_authorized
num_classes = args.num_classes
model_name = args.model
compression_method = args.band_selection
components = args.components
visualize = args.visualize
from_band = args.from_band
to_band = args.to_band
step_band = args.step_band
X, X_train, X_test, y_train, y_test = pp.preprocess_dataset(classes_authorized, components, compression_method, patch_size)
input_shape = X_train[0].shape
# Visualization
_, lr = choose_model(model_name, input_shape, num_classes)
model = load_model(model_path)
model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adam(lr=lr), metrics=['accuracy'])
if visualize == "guided_backprop":
# might not work for pruned models: KeyError: "The name 'dense_3_1/Softmax:0' refers to a Tensor which does not exist. The operation, 'dense_3_1/Softmax', does not exist in the graph."
guided_backpropagation(model, n_bands=X.shape[2], x_train=X_train, from_band=from_band, to_band=to_band, step_band=step_band)
elif visualize == "gradient":
gradients(model, n_bands=X.shape[2], x_train=X_train, x_test=X_test, from_band=from_band, to_band=to_band, step_band=step_band)
elif visualize == "activation_map":
activation_map(model, X_train, from_band=from_band, to_band=to_band, step_band=step_band)
elif visualize == "integrated_gradient":
integrated_gradients(model, n_bands=X.shape[2], x_train=X_train, from_band=from_band, to_band=to_band, step_band=step_band)
elif visualize == "visual_backprop":
visual_backpropagation(model, n_bands=X.shape[2], x_train=X_train, from_band=from_band, to_band=to_band, step_band=step_band)