-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
342 lines (265 loc) · 11.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import tifffile as tif
import gc
import pandas as pd
import numpy as np
import cv2
from shapely import affinity
from shapely import wkt
from shapely.geometry import Polygon, MultiPolygon
from collections import defaultdict
import matplotlib.pyplot as plt
import global_vars
import os
def shw(im, y=6.0, x=6.0):
plt.figure(figsize=(x,y))
plt.imshow(im)
plt.show()
def load_train_names():
train_labels = pd.read_csv(os.path.join(global_vars.DATA_DIR,'train_wkt_v4.csv'), index_col=0)
return list(train_labels.index.unique())
def load_rgb(im_id):
return tif.imread(os.path.join(global_vars.DATA_DIR,'three_band', im_id + '.tif')).transpose((1, 2, 0))
def load_m(im_id):
return tif.imread(os.path.join(global_vars.DATA_DIR,'sixteen_band', im_id + '_M.tif')).transpose((1, 2, 0))
def load_labels(name, size, class_num):
return tif.imread(os.path.join(global_vars.DATA_DIR, 'labels',
name + '_' + str(size) +
'_class_' + str(class_num) + '.tif'))
def load_all_lab(name, size):
for i in range(1, 11):
if i == 1:
im = load_labels(name, size, i)
ims = np.zeros(list(im.shape[:2]) + [10])
ims[:, :, i - 1] = im[:, :, 0]
else:
ims[:, :, i - 1] = load_labels(name, size, i)[:, :, 0]
return ims
def poly_label(image_id, class_type):
train_wkt = pd.read_csv(os.path.join(global_vars.DATA_DIR,'train_wkt_v4.csv'))
return wkt.loads(train_wkt.query('ClassType==@class_type and ImageId == @image_id').iloc[0, 2])
# generate wkt's
def make_poly(name, mask, epsilon, min_area):
"""creates a set of polygons from an image mask and scales it to submission coordinates"""
shp = mask.shape
mpoly = mask_to_polygons(mask, epsilon=epsilon, min_area=min_area)
scaled = scale_multipolygon(name, mpoly, shp[0], shp[1])
return scaled
def make_wkt(name, poly_lab_num, mask, epsilon, min_area):
shp = mask.shape
scaled = make_poly(name, mask, epsilon, min_area)
wkt_tmp = wkt.dumps(scaled)
pred = [name, poly_lab_num, wkt_tmp]
return pred
def simple_to_wkt(threshed_masks, im_name, class_nums):
all_preds = list()
for e, c_num in enumerate(class_nums):
mask = threshed_masks[:, :, e]
mask = cv2.resize(mask.astype(np.uint8), (mask.shape[1] * 4, mask.shape[0] * 4), interpolation=0)
tmp_wkt = make_wkt(im_name, c_num, mask, 1, 1)
all_preds.append(tmp_wkt)
gc.collect()
all_preds = pd.DataFrame(all_preds, columns=['ImageId', 'ClassType', 'MultipolygonWKT'])
all_preds = all_preds.replace(['POLYGON EMPTY', 'GEOMETRYCOLLECTION EMPTY'],
['MULTIPOLYGON EMPTY','MULTIPOLYGON EMPTY'])
return all_preds
def make_masks(shp, im_id, label_nums):
for e, num in enumerate(label_nums):
if e == 0:
mask = make_mask(shp, im_id, num)
masks = mask.reshape(list(mask.shape) + [1])
else:
mask = make_mask(shp, im_id, num)
mask = mask.reshape(list(mask.shape) + [1])
masks = np.concatenate((masks, mask), axis=2)
return masks
def make_mask(shp, im_id, label_num):
grid_sizes = pd.read_csv(os.path.join(global_vars.DATA_DIR,'grid_sizes.csv'), index_col=0)
train_wkt = pd.read_csv(os.path.join(global_vars.DATA_DIR,'train_wkt_v4.csv'), index_col=0)
polys = get_polygon_list(train_wkt, im_id, label_num)
x_max = grid_sizes.loc[im_id, 'Xmax']
y_min = grid_sizes.loc[im_id, 'Ymin']
plist, ilist = get_and_convert_contours(polys, shp, x_max, y_min)
return plot_mask(shp, plist, ilist)
def find_thresh(masks, labels, lab_pos):
thresh = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.65, 0.7, 75, 0.8]
best_iou = 0
best_thresh = -1
for i in thresh:
for e, j in enumerate(masks):
if e == 0:
tmp = j[:, :, lab_pos] > i
tmp = tmp.reshape((tmp.shape[0] * tmp.shape[1], -1))
lab = labels[e][:, :, lab_pos]
lab = lab.reshape((tmp.shape[0] * tmp.shape[1], -1))
else:
t = (j[:, :, lab_pos] > i)
t = t.reshape(t.shape[0] * t.shape[1], -1)
tmp = np.concatenate((tmp, t), axis=0)
l = labels[e][:, :, lab_pos]
l = l.reshape(t.shape[0] * t.shape[1], -1)
lab = np.concatenate((lab, l), axis=0)
total_iou = jaccard(lab, tmp)
if total_iou > best_iou:
best_thresh = i
best_iou = total_iou
return best_thresh
def scale_multipolygon(im_name, mpoly, height, width):
"""scales a multipolgon using the gridsizes provided by kaggle admins"""
grid_sizes = pd.read_csv(os.path.join(global_vars.DATA_DIR,'grid_sizes.csv'), index_col=0)
x_max = grid_sizes.loc[im_name, 'Xmax']
y_min = grid_sizes.loc[im_name, 'Ymin']
return affinity.scale(mpoly, xfact=x_max / width, yfact=y_min / height, origin=(0, 0))
def jaccard_poly(pred_mpoly, lab_mpoly):
"""intersection over union for two shapely multipolygons
Thanks to shawn for posting this code on kaggle forums"""
tp = pred_mpoly.intersection(lab_mpoly).area
fp = pred_mpoly.area - tp
fn = lab_mpoly.area - tp
if fn + tp + fp == 0:
return 0
else:
return tp / (tp + fp + fn)
def jaccard(labels, preds):
tp = (labels.flatten().astype(np.int) * preds.flatten().astype(np.int)).sum()
fp = preds.sum() - tp
fn = labels.sum() - tp
if (tp + fp + fn) == 0:
return 0
else:
return tp / (tp + fp + fn)
def augment_ims(x_train, y_train):
for i in range(x_train.shape[0]):
transp = np.random.randint(2)
rotation = np.random.randint(4)
x_tmp = x_train[i, :, :, :]
y_tmp = y_train[i, :, :, :]
if transp == 1:
x_train[i, :, :, :] = np.rot90(x_tmp.transpose((1, 0, 2)), k=rotation)
y_train[i, :, :, :] = np.rot90(y_tmp.transpose((1, 0, 2)), k=rotation)
else:
x_train[i, :, :, :] = np.rot90(x_tmp, k=rotation)
y_train[i, :, :, :] = np.rot90(y_tmp, k=rotation)
return x_train, y_train
def get_train_patches(im, lab_im, num_sample, label_edge, buff):
ptch = list()
labs = list()
im_shp = im.shape
for i in range(num_sample):
uly = np.random.randint(buff, im_shp[0]-buff-label_edge)
ulx = np.random.randint(buff, im_shp[1]-buff-label_edge)
labs.append(lab_im[uly:uly+label_edge, ulx:ulx+label_edge,:])
ptch.append(im[uly-buff:uly + label_edge + buff, ulx-buff:ulx + label_edge + buff, :])
return ptch, labs
def print_scores(preds, y_test, lab_names, include_background=True):
all_ious = list()
if include_background:
const=0
else:
const=1
for e,i in enumerate(lab_names):
preds1 = preds[:, :, :, e+const].flatten().astype(np.float)
labs1 = y_test[:, :, :, e+const].flatten().astype(np.int)
print('\n\nscores for class ' + str(i))
print('iou for 0.4 thresh val images ',jaccard(labs1, (preds1 > 0.4)))
iou_50 = jaccard(labs1, (preds1 > 0.5))
all_ious.append(iou_50)
print('iou for 0.5 thresh val images ', iou_50)
print('iou for 0.6 thresh val images ',jaccard(labs1, (preds1 > 0.6)))
return all_ious
### all code below here is adapted from code provided by helpful people on kaggle.
### I have made slight modifacations, so any butchered code is likely mine;)
# https://www.kaggle.com/visoft/dstl-satellite-imagery-feature-detection/export-pixel-wise-mask
def convert_coordinates_to_raster(coords, img_size, x_max, y_min):
# __author__ visoft
H, W = img_size
W1 = 1.0 * W * W / (W + 1)
H1 = 1.0 * H * H / (H + 1)
xf = W1 / x_max
yf = H1 / y_min
coords[:, 1] *= yf
coords[:, 0] *= xf
coords_int = np.round(coords).astype(np.int32)
return coords_int
def get_polygon_list(train_wkt, image_id, class_type):
# __author__ visoft
df_image = train_wkt.loc[image_id, :]
multipoly_def = df_image[df_image.ClassType == class_type].MultipolygonWKT
polygon_list = None
if len(multipoly_def) > 0:
assert len(multipoly_def) == 1
polygon_list = wkt.loads(multipoly_def.values[0])
return polygon_list
def get_and_convert_contours(polygon_list, img_size, x_max, y_min):
# __author__ visoft
perim_list = []
interior_list = []
if polygon_list is None:
return None
for poly in polygon_list:
perim = np.array(list(poly.exterior.coords))
perim_c = convert_coordinates_to_raster(perim, img_size, x_max, y_min)
perim_list.append(perim_c)
for pi in poly.interiors:
interior = np.array(list(pi.coords))
interior_c = convert_coordinates_to_raster(interior, img_size, x_max, y_min)
interior_list.append(interior_c)
return perim_list, interior_list
def plot_mask(img_size, perim_list, interior_list, class_value=1):
# __author__ visoft
img_mask = np.zeros(img_size, np.uint8)
if perim_list is None or interior_list is None:
return img_mask
cv2.fillPoly(img_mask, perim_list, class_value)
cv2.fillPoly(img_mask, interior_list, 0)
return img_mask
def mask_to_polygons(mask, epsilon=1, min_area=1.):
# __author__ = Konstantin Lopuhin
# https://www.kaggle.com/lopuhin/dstl-satellite-imagery-feature-detection/full-pipeline-demo-poly-pixels-ml-poly
# first, find contours with cv2: it's much faster than shapely
image, contours, hierarchy = cv2.findContours(
((mask == 1) * 255).astype(np.uint8),
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
# create approximate contours to have reasonable submission size
approx_contours = [cv2.approxPolyDP(cnt, epsilon, True)
for cnt in contours]
if not approx_contours:
return MultiPolygon()
# now messy stuff to associate parent and child contours
cnt_children = defaultdict(list)
child_contours = set()
assert hierarchy.shape[0] == 1
# http://docs.opencv.org/3.1.0/d9/d8b/tutorial_py_contours_hierarchy.html
for idx, (_, _, _, parent_idx) in enumerate(hierarchy[0]):
if parent_idx != -1:
child_contours.add(idx)
cnt_children[parent_idx].append(approx_contours[idx])
# create actual polygons filtering by area (removes artifacts)
all_polygons = []
for idx, cnt in enumerate(approx_contours):
if idx not in child_contours and cv2.contourArea(cnt) >= min_area:
assert cnt.shape[1] == 1
poly = Polygon(
shell=cnt[:, 0, :],
holes=[c[:, 0, :] for c in cnt_children.get(idx, [])
if cv2.contourArea(c) >= min_area])
all_polygons.append(poly)
# approximating polygons might have created invalid ones, fix them
all_polygons = MultiPolygon(all_polygons)
if not all_polygons.is_valid:
all_polygons = all_polygons.buffer(0)
# need to re add in the check for type of all_polygons
all_polygons = MultiPolygon(all_polygons)
return all_polygons
# https://www.kaggle.com/chatcat/dstl-satellite-imagery-feature-detection/load-a-3-band-tif-image-and-overlay-dirt-tracks
def scl_prc(matrix):
# __author__ = Alan Schoen
"""Fixes the pixel value range to 2%-98% original distribution of values"""
orig_shape = matrix.shape
matrix = np.reshape(matrix, [matrix.shape[0] * matrix.shape[1], 3]).astype(float)
# Get 2nd and 98th percentile
mins = np.percentile(matrix, 2, axis=0)
maxs = np.percentile(matrix, 98, axis=0) - mins
matrix = (matrix - mins[None, :]) / maxs[None, :]
matrix = np.reshape(matrix, orig_shape)
matrix = matrix.clip(0, 1)
return matrix