-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathind4_replication.Rmd
561 lines (314 loc) · 14.6 KB
/
ind4_replication.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
---
title: "paper replication"
author: "Grigoris Ntoulaveris"
date: "`r Sys.Date()`"
output: html_document
---
The following is an attempt at replicating the results of the study https://europepmc.org/article/MED/29795293#abstract, specifically for the scRNA seq data of the "Individual 4" dataset. Differences with the paper's methods can be found only in the clustering section. Besides density based clustering (DBSCAN), which corresponded to the paper's methods, two more clustering approaches are presented (GMMs, SNN-Louvain). A comparison with the paper's results concering the marker genes of interest ensues the two new algorithms.
```{r}
source("scRNA_R_pipeline.R")
```
# Data exploration
```{r}
file_path_id4 <- "data/GSM3099846_Ind4_Expression_Matrix.txt.gz"
data <- fread(file_path_id4, sep = "\t", header = TRUE, data.table = TRUE)
data <- transpose(data, keep.names = "cells", make.names = "V1")
dataset_name <- "GSM3099846_Ind4_Expression_Matrix"
```
```{r}
#melted_data <- melt_dataset(data)
```
```{r}
#library_size <- get_library_size(melted_data)
```
```{r}
#plot_GeneExpression_heatmap(melted_data)
```
# Data preprocessing
```{r}
data_copy <- data.frame(data)
```
```{r}
data_seurat <- build_seurat_object(data_copy, dataset_name)
```
# Quality Control
```{r}
data_seurat <- find_mitochondrial_genes(data_seurat)
print(data_seurat@meta.data)
```
In the following plots the nCount_RNA corresponds to the total number of RNA molecules detected in a cell, which can be considered as a measure of the cell's RNA content or overall expression level. nFeature_RNA represents the count of unique genes or features with non-zero expression in a cell and is an indicator of the diversity of expressed genes in a cell. percent_mito corresponds to the percentage of mitochondrial genes that are expressed in a cell and a high number is indicative of cells of low-quality.
```{r}
plot_Features_violin(data_seurat)
```
In the following plot the total number of RNA molecules and the total number of unique genes for each cell are plotted together, to ensure that the previous visualization is not misleading in terms of cell quality. Good quality cells usually have a high value in both metrics. If many cells are clustered towards the bottom right of the plot it would mean that only a few number of unique genes were detected and those are sequenced continuously providing a misleading high number of transcripts. If many cells are clustered towards the top left of the plot it would mean that the sequencer had discovered many unique genes but they wouldn't be deeply sequenced enough to provide meaningful results.
```{r}
plot_Features_scatter(data_seurat)
```
# Filtering
In the filtering step low-quality cells are removed from the dataset, based on the results of the quality control.
```{r}
data_seurat <- filter_cells(data_seurat,
nFeature_RNA_min = 500, nFeature_RNA_max = 6000, percent_mito_max = 10)
data_seurat
```
# Normalization
In order to be able to compare the levels of expression across multiple cells the data need to be normalized. The gene expression measurements for each cell is divided by the total expression of all cells, is then multiplied by a scaling factor. The result is also transformed into log space.
```{r}
data_seurat <- NormalizeData(data_seurat, normalization.method = "LogNormalize")
```
# Regress Out Normalization
```{r}
# Access the RNA assay
assay_data <- data_seurat@assays$RNA
# Retrieve the counts matrix
counts_matrix <- assay_data@counts
# Find the UMI values
umi_values <- colSums(counts_matrix)
```
```{r}
data_seurat <- perform_regress_out(data_seurat)
```
# Highly variable genes identification
```{r}
# find all high variable genes
data_seurat <- FindPlot_variable_genes(data_seurat)
```
# PCA
```{r}
data_seurat <- reduce_dimensions(data_seurat, "pca")
```
# Save - Load seurat
```{r}
saveRDS(data_seurat, file="ind4_seurat")
```
```{r}
data_seurat <- readRDS(file = "ind4_seurat")
```
# Clustering
## GMM clustering
```{r}
clustering_results <- GMM_clustering(data_seurat, "pca")
data_seurat <- clustering_results[[1]]
gmm_model <- clustering_results[[2]]
cell_embeddings <- clustering_results[[3]]
```
```{r}
data_seurat@meta.data
```
```{r}
# with tSNE as projection for plots
clustering_plots <- plot_clustering(dataset_name, data_seurat, gmm_model)
```
```{r}
# Find marker genes for all clusters
marker_genes <- FindAllMarkers(data_seurat, only.pos = TRUE, random.seed = 42)
# Print the marker genes for each cluster
print(marker_genes)
```
```{r}
# Group marker_genes by cluster and select the top 10 genes based on avg_log2FC
top_genes <- marker_genes %>%
group_by(cluster) %>%
top_n(10, avg_log2FC) %>%
ungroup()
```
```{r}
# Specify the genes to include in the new data frame
genes_to_include <- c("LTF", "SERPINB4", "SERPINB3", "WFDC2", "LCN2", "BTG1", "CLDN4", "ANXA1", "HMGA1", "S100A2", "TIMP1", "MMP3", "TAGLN", "ACTA2", "ACTG2", "EIF5A", "CAV1", "VIM", "STC2", "AGR2", "AREG", "TNFSF10", "SERPINA1", "PIP", "APOD", "SFRP4", "IGFBP7", "GNG11", "ANGPT2", "SERPINE1", "HSPA6", "ZNF90", "CORO1A")
# Filter the top_genes data frame based on the specified genes
top_genes_small <- top_genes[top_genes$gene %in% genes_to_include, ]
# Convert the gene column to a factor with the desired order
top_genes_small$gene <- factor(top_genes_small$gene, levels = genes_to_include)
ggplot(top_genes_small, aes(x = cluster, y = gene, fill = avg_log2FC)) +
geom_tile(color = "white") +
scale_fill_gradient(low = "blue", high = "red") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(x = "Cluster", y = "Gene")
```
## Density based clustering
```{r}
data_seurat <- perform_dbscan_clustering(data_seurat, "pca")
```
```{r}
DimPlot(data_seurat, group.by = "cluster_label")
```
```{r}
# only with PCA
clustering_plots <- plot_clustering(dataset_name, data_seurat, gmm_model)
```
## KNN graphs clustering
```{r}
data_seurat <- FindNeighbors(data_seurat, dims = 1:10)
data_seurat <- FindClusters(data_seurat, resolution = 0.5, algorithm = 2, random.seed = 42)
```
```{r}
data_seurat <- RunTSNE(data_seurat, dims = 1:10)
```
```{r}
DimPlot(data_seurat, reduction = "tsne")
```
Next, we find the marker genes that were specified in the paper inside the clusters that were created with Louvain. After that, based again on the paper's results, according to their marker genes, some clusters will be combined into one to reveal the three main cell types.
```{r}
# Find marker genes for all clusters
marker_genes <- FindAllMarkers(data_seurat, only.pos = TRUE, random.seed = 42)
# Print the marker genes for each cluster
print(marker_genes)
```
```{r}
# Group marker_genes by cluster and select the top 10 genes based on avg_log2FC
top_genes <- marker_genes %>%
group_by(cluster) %>%
top_n(10, avg_log2FC) %>%
ungroup()
```
```{r}
# Convert top_genes to a data.table
top_genes_dt <- as.data.table(top_genes)
# Reshape the data table for heatmap plotting
heatmap_data <- dcast(top_genes_dt, gene ~ cluster, value.var = "avg_log2FC")
# Reorder the rows based on gene names
heatmap_data <- heatmap_data[order(gene)]
# Generate the heatmap
ggplot(top_genes_dt, aes(x = cluster, y = gene, fill = avg_log2FC)) +
geom_tile(color = "white") +
scale_fill_gradient(low = "blue", high = "red") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(x = "Cluster", y = "Gene")
```
```{r}
# Specify the genes to include in the new data frame
genes_to_include <- c("LTF", "SERPINB4", "SERPINB3", "WFDC2", "LCN2", "BTG1", "CLDN4", "ANXA1", "HMGA1", "S100A2", "TIMP1", "MMP3", "TAGLN", "ACTA2", "ACTG2", "EIF5A", "CAV1", "VIM", "STC2", "AGR2", "AREG", "TNFSF10", "SERPINA1", "PIP", "APOD", "SFRP4", "IGFBP7", "GNG11", "ANGPT2", "SERPINE1", "HSPA6", "ZNF90", "CORO1A")
# Filter the top_genes data frame based on the specified genes
top_genes_small <- top_genes[top_genes$gene %in% genes_to_include, ]
# Convert the gene column to a factor with the desired order
top_genes_small$gene <- factor(top_genes_small$gene, levels = genes_to_include)
ggplot(top_genes_small, aes(x = cluster, y = gene, fill = avg_log2FC)) +
geom_tile(color = "white") +
scale_fill_gradient(low = "blue", high = "red") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(x = "Cluster", y = "Gene") +
ggtitle("Marker genes of interest")
```
```{r}
# Find genes not in top_genes
genes_not_found <- setdiff(genes_to_include, top_genes_small$gene)
# Find the cluster for genes not found in top_genes from marker_genes
missing_genes_clusters <- marker_genes[marker_genes$gene %in% genes_not_found, c("gene", "cluster")]
# Print the genes and their corresponding clusters
cat(genes_not_found)
print(missing_genes_clusters)
```
### Comparison with paper
Finally, the classified genes for Individual 4 listed in the paper's Supplementary material are compared with our own classified genes to access similarity of results.
```{r}
excel_file <- "genes_labels_ind4_7.xlsx"
paper_data <- read_excel(excel_file)
filtered_data <- paper_data[paper_data$individual == "I4", ]
# Create a new data frame with updated labels
updated_marker_genes <- marker_genes
# Update labels in the "cluster" column
updated_marker_genes$cluster <- ifelse(updated_marker_genes$cluster %in% c(0, 1), "L1",
ifelse(updated_marker_genes$cluster %in% c(2, 3, 5), "B",
ifelse(updated_marker_genes$cluster %in% c(4, 6), "L2", "X")))
updated_paper_data <- paper_data
updated_paper_data$cluster <- ifelse(updated_paper_data$cluster %in% c("Basal", "Basal_Myoepithelial"), "B",
ifelse(updated_paper_data$cluster %in% c("Luminal_1_1", "Luminal_1_2"), "L1",
ifelse(updated_paper_data$cluster %in% c("Luminal_2"), "L2", "X")))
```
```{r}
# Create a scatter plot to compare cluster labels
ggplot(comparison_df, aes(x = cluster_paper, y = cluster_marker)) +
geom_point() +
geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "red") +
theme_minimal() +
labs(x = "Cluster Label (Paper Data)", y = "Cluster Label (Marker Genes)") +
ggtitle("Comparison of Cluster Labels")
```
```{r}
# Find common genes between updated_paper_data and updated_marker_genes
common_genes <- intersect(updated_paper_data$gene, updated_marker_genes$gene)
# Filter updated_paper_data and updated_marker_genes for common genes
common_genes_paper_data <- updated_paper_data[updated_paper_data$gene %in% common_genes, ]
common_genes_marker_genes <- updated_marker_genes[updated_marker_genes$gene %in% common_genes, ]
# Merge the two data frames to compare cluster labels
comparison_df <- merge(common_genes_paper_data, common_genes_marker_genes, by = "gene", suffixes = c("_paper", "_marker"))
# Calculate the number of differences in cluster labels
comparison_df$label_diff <- ifelse(comparison_df$cluster_paper != comparison_df$cluster_marker, 1, 0)
# Calculate the number of differences in cluster labels
num_differences <- sum(comparison_df$cluster_paper != comparison_df$cluster_marker)
total_gene_entries <- nrow(comparison_df)
percentage_of_differences <- round((num_differences / total_gene_entries)*100, 2)
# Print the number of differences
#print(paste("Number of Differences:", num_differences))
ggplot(comparison_df, aes(x = gene, fill = factor(label_diff))) +
geom_bar() +
scale_fill_manual(values = c("0" = "green", "1" = "red"), labels = c("No Difference", "Difference")) +
theme_minimal() +
labs(x = "Genes", y = "Number of Differences", fill= "") +
ggtitle(sprintf("Misclassified genes according to the paper's data\n(%.2f%% of difference)", percentage_of_differences)) +
theme(axis.text.x = element_blank(), axis.ticks.x = element_blank())
```
# Save the labeled results in a csv
Save the expression matrix with the cluster labels of only the top 2000 highly variable genes in an attempt to evade the curse of dimensionality (and the excessive overfitting) in the classification process.
```{r}
var_genes <- VariableFeatures(data_seurat)
top_var_genes <- head(var_genes, 2000)
```
```{r}
expression_matrix <- t(GetAssayData(data_seurat, assay = "RNA")[top_var_genes, ])
expression_df <- as.data.frame(expression_matrix)
expression_dt <- data.table(expression_df)
cluster_labels <- Idents(data_seurat)
cluster_labels_dt <- data.table(cluster_labels)
joined_dt <- data.table(expression_dt, cluster = cluster_labels_dt)
setnames(joined_dt, old = "cluster.cluster_labels", new = "cluster_label")
write.csv(joined_dt, file=gzfile("ind4_var_genes_with_clusters.csv.gz"), row.names = FALSE)
```
Save the initial expression matrix but with labeled cells
```{r}
#install.packages("zip")
library(zip)
expression_matrix <- t(GetAssayData(data_seurat, assay = "RNA"))
expression_df <- as.data.frame(expression_matrix)
expression_dt <- data.table(expression_df)
cluster_labels <- Idents(data_seurat)
cluster_labels_dt <- data.table(cluster_labels)
joined_dt <- data.table(expression_dt, cluster = cluster_labels_dt)
setnames(joined_dt, old = "cluster.cluster_labels", new = "cluster_label")
# Save the data frame as a CSV file
#write.csv(joined_dt, "ind4_exp_matrix_with_clusters.csv", row.names = FALSE)
write.csv(joined_dt, file=gzfile("ind4_exp_matrix_with_clusters.csv.gz"), row.names = FALSE)
```
Save all PCs
```{r}
# Extract the PCA embeddings
pca_embeddings <- data_seurat@reductions$pca@cell.embeddings
# Get the cluster labels for each cell
cluster_labels <- Idents(data_seurat)
cluster_labels_dt <- data.table(cluster_labels)
# Create a data frame with PCA embeddings and cluster labels
pca_data <- data.table(pca_embeddings)
# Add the cluster labels as a new column
joined_dt <- data.table(pca_data, cluster = cluster_labels_dt)
setnames(joined_dt, old = "cluster.cluster_labels", new = "cluster_label")
# Save the data frame as a CSV file
write.csv(joined_dt, "ind4_pca_embeddings_with_clusters.csv", row.names = FALSE)
```
Save only the first 10 PCs
```{r}
# Extract the PCA embeddings
pca_embeddings <- data_seurat@reductions$pca@cell.embeddings[, 1:10]
# Get the cluster labels for each cell
cluster_labels <- Idents(data_seurat)
cluster_labels_dt <- data.table(cluster_labels)
# Create a data frame with PCA embeddings and cluster labels
pca_data <- data.table(pca_embeddings)
# Add the cluster labels as a new column
joined_dt <- data.table(pca_data, cluster = cluster_labels_dt)
setnames(joined_dt, old = "cluster.cluster_labels", new = "cluster_label")
# Save the data frame as a CSV file
write.csv(joined_dt, "ind4_pca_embeddings_only_10PCs.csv", row.names = FALSE)
```