forked from TobigsConf-1415/MPTI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
120 lines (100 loc) · 4.66 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import sys
import argparse
import re
import pandas as pd
from numpy import argmax
import torch
import torch.nn.functional as F
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from utils import load, save, nameFromDB, toResponse, EOS, WELCOME, REGISTER, CAPITAL, PERSONALTXT, sample_sequence
from DialogRPT.src.dialogRPT import getIntegrated
from flask import Flask, request
app = Flask(__name__)
def resSherlock(inputs: str, params, name = "NoName", history = ""):
history += inputs+ EOS
if (history.count(EOS) > 4):
history = history.split(EOS, maxsplit = 2)[-1]
final, prob_gen, score_ranker, hyp = sherlockModel.predict(history, args.wt_ranker, params)[0]
sherlock = hyp.replace("<NAME>", name)
history += sherlock + EOS
return sherlock, history
@app.route("/sherlock", methods=["POST"])
def sherlock():
req = request.get_json()
inputs = req["userRequest"]["utterance"]
kakaoid = req["userRequest"]["user"]["id"]
if inputs.startswith("!register"):
name = inputs.split(" ")[-1]
db[kakaoid] = (name, "")
output = WELCOME.format(name)
else:
name, history = nameFromDB(db, kakaoid)
if name==None:
output = REGISTER
else:
output, history = resSherlock(inputs, params, name, history)
db[kakaoid] = (name, history)
return toResponse(output)
def response_ironman(inputs: str):
input_vec = vectorizer.transform([inputs])
similarity = cosine_similarity(input_vec, tfidf)[0]
if max(similarity) > 0.5 :
return rule_based_df['answer'][argmax(similarity)]
else:
history = [tokenizer_ironman.encode(inputs)]
with torch.no_grad():
out_ids = sample_sequence(personality, history, tokenizer_ironman, model_ironman)
response = tokenizer_ironman.decode(out_ids, skip_special_tokens=True)
response = re.split("([.?!’”]) ", response)
response = [response[i-1] + response[i] for i in range(1, len(response), 2)] + [response[-1]]
response = re.split("([.?!’,”]) ", ' '.join([r.capitalize() for r in response]))
response_fin = []
for word in [w for s in response for w in s.split()]:
punc = ''
if word.endswith(('.', '!','?')):
punc = word[-1]; word = word[:-1]
if word in CAPITAL.keys():
response_fin.append(CAPITAL[word])
else: response_fin.append(word)
response_fin.append(punc)
return re.sub(r' (?=\W)', '', ' '.join(response_fin))
@app.route("/ironman", methods=["POST"])
def ironman():
req = request.get_json()
inputs = req["userRequest"]["utterance"]
output = response_ironman(inputs)
return toResponse(output)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dbname', '-db', type=str, default = 'db.pickle')
parser.add_argument('--port', '-p', type=int, default = 3305)
parser.add_argument('--ip', '-i', type=str, default = '0.0.0.0')
parser.add_argument('--path_generator', '-pg', type=str, default = 'DialoGPT/output')
parser.add_argument('--path_ranker', '-pr', type=str, default = "DialogRPT/restore/ensemble.yml")
parser.add_argument('--path_transfo', '-pt', type=str, default = "TransferTransfo/default_gpt2")
parser.add_argument('--path_rule', type=str, default = "TransferTransfo/rule_based_df.json")
parser.add_argument('--topk', type=int, default=3)
parser.add_argument('--beam', type=int, default=3)
parser.add_argument('--wt_ranker', type=float, default=0.4)
parser.add_argument('--topp', type=float, default=0.8)
parser.add_argument('--max_t', type=int, default=15)
parser.add_argument('--cpu', action='store_true', help='enables CUDA training')
args = parser.parse_args()
cuda = False if args.cpu else torch.cuda.is_available()
tokenizer_ironman = GPT2Tokenizer.from_pretrained(args.path_transfo)
model_ironman = GPT2LMHeadModel.from_pretrained(args.path_transfo)
device = torch.device('cuda' if cuda else 'cpu')
model_ironman.to(device)
add_special_tokens_(model_ironman, tokenizer_ironman)
personality = [tokenizer_ironman.encode(text) for text in PERSONALTXT]
rule_based_df = pd.read_json(args.path_rule)
vectorizer = TfidfVectorizer()
tfidf = vectorizer.fit_transform(rule_based_df['question']).toarray()
db = load(args.dbname)
sherlockModel = getIntegrated(args.path_ranker, args.path_generator, cuda)
params = {'topk': args.topk, 'beam': args.beam, 'topp': args.topp, 'max_t':args.max_t}
save(db, args.dbname)
app.run(host=args.ip, port=args.port)