-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq1.py
94 lines (76 loc) · 2.58 KB
/
q1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
def load_data():
boston = datasets.load_boston()
X = boston.data
y = boston.target
features = boston.feature_names
return X,y,features
def visualize(X, y, features):
plt.figure(figsize=(20, 5))
feature_count = X.shape[1]
# i: index
for i in range(feature_count):
plt.subplot(3, 5, i + 1)
plt.plot(X[:,i], y,'.')
plt.xlabel(features[i])
#plt.ylabel('target y')
#TODO: Plot feature i against y
plt.tight_layout()
plt.show()
def fit_regression(X,Y):
#TODO: implement linear regression
# Remember to use np.linalg.solve instead of inverting!
X=np.column_stack((np.ones(X.shape[0]).reshape(X.shape[0],1),X))
return np.linalg.solve(np.dot(X.T,X),np.dot(X.T,Y))
#raise NotImplementedError()
def split(X,y):
index=np.random.choice(X.shape[0],X.shape[0]*8//10,replace=False);
index.sort();
Xtrain=X[0,:];
Xtest=X[0,:]
Ytrain=y[index[0]];
Ytest=y[index[0]];
for i in range(X.shape[0]):
if i in index:
Xtrain=np.row_stack((Xtrain,X[i]))
Ytrain=np.row_stack((Ytrain,y[i]))
else:
Xtest=np.row_stack((Xtest,X[i]))
Ytest=np.row_stack((Ytest,y[i]))
return np.delete(Xtest,0,0),np.delete(Xtrain,0,0),np.delete(Ytest,0,0),np.delete(Ytrain,0,0);
def tabulate(features,w):
hashmap={'1':'w[0]'};
print ('1 :',w[0]);
for i,item in enumerate(features):
hashmap[item]=w[i+1];
print (item,':',w[i+1]);
return hashmap
def errors(x,y,w):
x = np.column_stack((np.ones(x.shape[0]).reshape(x.shape[0],1), x));
MSE=np.mean((x.dot(w)-y) ** 2)
return MSE,np.mean(abs(x.dot(w)-y)),np.sqrt(MSE);
def main():
# Load the data
X, y, features = load_data()
print("Features: {}".format(features))
Xshape = X.shape;
yshape = y.shape;
print ('Feature Size: ' , Xshape[0],' Feature dimension: ',Xshape[1]) #>> (506,13)
print ('y Size: ', yshape[0], ' y dimension:' ,1)
# Visualize the features
visualize(X, y, features)
#TODO: Split data into train and test
X_test,X_train,y_test,y_train=split(X,y);
#print (train.shape,test.shape)
# Fit regression model
w = fit_regression(X_train,y_train);
#print(w)
hashmap=tabulate(features,w);
# Compute fitted values, MSE, etc.
MSE,MAE,RMSE=errors(X_test,y_test,w);
print('\nMean Square Error: ',MSE,'\nMean Absolute Error: ',MAE,\
'\nRoot Mean Square Error: ',RMSE);
if __name__ == "__main__":
main()