-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathex2.57-sum-and-product-arbitrary-numbers.scm
81 lines (65 loc) · 2.06 KB
/
ex2.57-sum-and-product-arbitrary-numbers.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
(define (deriv exp var)
(display "deriv ... ")
(write-line exp)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(write-line "deconstruct sum")
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(write-line "deconstruct product")
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(write-line "deconstruct exponentiation")
(make-product
(make-product (exponent exp)
(make-exponentiation (base exp) (- (exponent exp) 1)))
(deriv (base exp) var)))
(else
(error "unknown expression type -- DERIV" exp))))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2) (and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (=number? exp num) (and (number? exp) (= exp num)))
(define (sum? x) (and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (augend s)
(if (= (length (cddr s)) 1)
(caddr s)
(cons '+ (cddr s))))
; this is also cool:
; (define (augend s) (accumulate make-sum 0 (cddr s)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list '+ a1 a2))))
(define (product? x) (and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (multiplicand p)
(if (= (length (cddr p)) 1)
(caddr p)
(cons '* (cddr p))))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list '* m1 m2))))
(define (make-exponentiation base exponent)
(cond ((=number? exponent 0) 1)
((=number? exponent 1) base)
(else (list '** base exponent))))
(define (exponentiation? x) (and (pair? x) (eq? (car x) '**)))
(define base cadr)
(define exponent caddr)
(deriv '(* x y (+ x 3)) 'x)
; -> x * y * (x + 3)
; -> x * deriv(y * (x + 3) + 1 * (y * x + 3)
; -> x * ( y * derive(x + 3) + 0) + (y * x + 3)
; -> x * y + (y * x + 3)