forked from mrshub/MRS-voxel-plot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure1B_voxel-overlap_two-groups.py
117 lines (89 loc) · 3.46 KB
/
figure1B_voxel-overlap_two-groups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
"""
Create a figure showing the overlap between the MRS voxels of a set of participants.
Each participant requires a mask image in standard space.
Participant IDs and group category should be in a TSV file entitled participants.tsv located in the
project directory.
Created by NWD, 2020-01-31
Modified by VHT, 2020-02-07
"""
import os
import numpy as np
import pandas as pd
import nibabel as ni
import matplotlib.pyplot as plt
from nilearn import plotting
from matplotlib import ticker
import matplotlib.gridspec as gridspec
# Project directory
data_dir = '/home/MRS_project/'
# Directory to create figures in
fig_dir = os.path.join(data_dir,'figures')
# Create figure directory if missing
if not os.path.isdir(fig_dir):
os.mkdir(fig_dir)
# Mask filename
mask_file = 'mask_mni.nii.gz'
# Naming of the headers of the participants.tsv file
ID_header='Participant_ID'
group_header='Group'
# Naming of the group categories:
group_name_1='Group1'
group_name_2='Group2'
# Load in the participant IDs and group information
subjects = pd.read_csv(data_dir+'participants.tsv', delimiter='\t')[ID_header]
groups = pd.read_csv(data_dir+'participants.tsv', delimiter='\t')[group_header]
n_subs_1 = sum(isinstance(name, str) for name in groups if name==group_name_1)
n_subs_2 = sum(isinstance(name, str) for name in groups if name==group_name_2)
# Load the MRS mask affine matrix and dimensions
def get_mask_info(fpath):
tmp = ni.load(fpath)
aff = tmp.affine
dims = tmp.shape
return(aff,dims)
mask_aff, mask_dims = get_mask_info(os.path.join(data_dir,subjects[0],'mrs',mask_file))
# Load mask data for participants in each group
mask_data_group_1 = np.zeros(np.hstack((n_subs_1,mask_dims)))
mask_data_group_2 = np.zeros(np.hstack((n_subs_2,mask_dims)))
idx1=0
idx2=0
for i in range(len(subjects)):
if groups[i]==group_name_1:
mask_data_group_1[idx1,:,:,:] = ni.load(os.path.join(data_dir,subjects[i],'mrs',mask_file)).get_data()
idx1=idx1+1
if groups[i]==group_name_2:
mask_data_group_2[idx2,:,:,:] = ni.load(os.path.join(data_dir,subjects[i],'mrs',mask_file)).get_data()
idx2=idx2+1
# Calculate the voxel density map
density_1 = np.sum(mask_data_group_1, axis = 0)
density_1 = (density_1/n_subs_1)*100
density_2 = np.sum(mask_data_group_2, axis = 0)
density_2 = (density_2/n_subs_2)*100
# Create NIFTI image for density map
density_map_1 = ni.Nifti1Image(density_1,mask_aff)
density_map_2 = ni.Nifti1Image(density_2,mask_aff)
# Plot the figure
fig = plt.figure()
fig.set_size_inches(6,3)
gs = gridspec.GridSpec(1, 3,width_ratios=[9,1,1])
ax1 = plt.subplot(gs[0])
display=plotting.plot_glass_brain(None, threshold=0, colorbar=False, axes=ax1, display_mode='xz',alpha=0.5)
display.add_contours(density_map_1, cmap='Reds',alpha=0.7)
display.add_contours(density_map_2, cmap='Blues',alpha=0.7)
ax2 = plt.subplot(gs[1])
a = np.array([[0,1]])
img = plt.imshow(a, cmap="Reds",axes=ax2)
ax2.set_visible(False)
plt.colorbar(ax=ax2)
ax3 = plt.subplot(gs[2])
a = np.array([[0,1]])
img = plt.imshow(a, cmap="Blues",axes=ax3)
ax3.set_visible(False)
plt.colorbar(ax=ax3)
# Adjust the scientific notation in the colorbars
for ax in plt.gcf().axes:
ax.yaxis.set_major_formatter(ticker.PercentFormatter(1))
# Save the figure
fig.savefig(fig_dir+'figure_voxel_density_map_two-groups.png',bbox_inches='tight',dpi=300)
# Save density map NIFTI files
density_map_1.to_filename(fig_dir+'voxel_density_map_group_1.nii.gz')
density_map_2.to_filename(fig_dir+'voxel_density_map_group_2.nii.gz')