-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolor_change.py
261 lines (208 loc) · 7.09 KB
/
color_change.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# torch.cuda.set_device(0)
# device='cpu'
def rgb2hsi(img):
img = torch.clamp(img, 0, 1)
r = img[:, 0, :, :]
g = img[:, 1, :, :]
b = img[:, 2, :, :]
i = (r + g + b) / 3
s = 1 - 3 * img.min(1)[0] / (r + g + b + 1e-5)
x1 = (2 * r - b - g) / 2
x2 = ((r - g) ** 2 + (r - b) * (g - b) + 1e-5) ** 0.5
angle = torch.arccos(x1 / x2) / 2 / torch.pi
# h = torch.Tensor(img.shape[0], img.shape[2], img.shape[3]).to(img.device)
h = (b <= r) * angle + (b > r) * (1 - angle)
h = h.unsqueeze(1)
s = s.unsqueeze(1)
i = i.unsqueeze(1)
out = torch.cat((h, s, i), dim=1)
return out
def hsi2rgb(img):
img = torch.clamp(img, 0, 1)
h = img[:, 0, :, :]
s = img[:, 1, :, :]
i = img[:, 2, :, :]
r = torch.zeros_like(h)
g = torch.zeros_like(h)
b = torch.zeros_like(h)
h1 = torch.zeros_like(h)
hi0 = (h < 1 / 3)
hi2 = (h >= 2 / 3)
hi1 = 1 - hi0.int() - hi2.int()
hi1 = (hi1 == 1)
h1[hi0] = 2 * torch.pi * h[hi0]
h1[hi1] = 2 * torch.pi * (h[hi1] - 1 / 3)
h1[hi2] = 2 * torch.pi * (h[hi2] - 2 / 3)
p = i * (1 - s)
q = i * (1 + s * torch.cos(h1) / (torch.cos(torch.pi / 3 - h1) + 1e-5))
r[hi0] = q[hi0]
b[hi0] = p[hi0]
g[hi0] = 3 * i[hi0] - r[hi0] - b[hi0]
g[hi1] = q[hi1]
r[hi1] = p[hi1]
b[hi1] = 3 * i[hi1] - r[hi1] - g[hi1]
b[hi2] = q[hi2]
g[hi2] = p[hi2]
r[hi2] = 3 * i[hi2] - g[hi2] - b[hi2]
r = r.unsqueeze(1)
g = g.unsqueeze(1)
b = b.unsqueeze(1)
out = torch.cat((r, g, b), dim=1)
return out
def rgb2hsv(img):
img = torch.clamp(img, 0, 1)
hue = torch.Tensor(img.shape[0], img.shape[2], img.shape[3]).to(img.device)
hue[img[:, 2] == img.max(1)[0]] = 4.0 + ((img[:, 0] - img[:, 1]) / (img.max(1)[0] - img.min(1)[0] + 1e-5))[
img[:, 2] == img.max(1)[0]]
hue[img[:, 1] == img.max(1)[0]] = 2.0 + ((img[:, 2] - img[:, 0]) / (img.max(1)[0] - img.min(1)[0] + 1e-5))[
img[:, 1] == img.max(1)[0]]
hue[img[:, 0] == img.max(1)[0]] = (0.0 + ((img[:, 1] - img[:, 2]) / (img.max(1)[0] - img.min(1)[0] + 1e-5))[
img[:, 0] == img.max(1)[0]]) % 6
hue[img.min(1)[0] == img.max(1)[0]] = 0.0
hue = hue / 6
saturation = (img.max(1)[0] - img.min(1)[0]) / (img.max(1)[0] + 1e-5)
saturation[img.max(1)[0] == 0] = 0
value = img.max(1)[0]
hue = hue.unsqueeze(1)
saturation = saturation.unsqueeze(1)
value = value.unsqueeze(1)
hsv = torch.cat([hue, saturation, value], dim=1)
return hsv
def hsv2rgb(hsv):
h, s, v = hsv[:, 0, :, :], hsv[:, 1, :, :], hsv[:, 2, :, :]
# 对出界值的处理
h = h % 1
s = torch.clamp(s, 0, 1)
v = torch.clamp(v, 0, 1)
r = torch.zeros_like(h)
g = torch.zeros_like(h)
b = torch.zeros_like(h)
hi = torch.floor(h * 6)
f = h * 6 - hi
p = v * (1 - s)
q = v * (1 - (f * s))
t = v * (1 - ((1 - f) * s))
hi0 = hi == 0
hi1 = hi == 1
hi2 = hi == 2
hi3 = hi == 3
hi4 = hi == 4
hi5 = hi == 5
r[hi0] = v[hi0]
g[hi0] = t[hi0]
b[hi0] = p[hi0]
r[hi1] = q[hi1]
g[hi1] = v[hi1]
b[hi1] = p[hi1]
r[hi2] = p[hi2]
g[hi2] = v[hi2]
b[hi2] = t[hi2]
r[hi3] = p[hi3]
g[hi3] = q[hi3]
b[hi3] = v[hi3]
r[hi4] = t[hi4]
g[hi4] = p[hi4]
b[hi4] = v[hi4]
r[hi5] = v[hi5]
g[hi5] = p[hi5]
b[hi5] = q[hi5]
r = r.unsqueeze(1)
g = g.unsqueeze(1)
b = b.unsqueeze(1)
rgb = torch.cat([r, g, b], dim=1)
return rgb
MAT_RGB2XYZ = torch.Tensor([[0.412453, 0.357580, 0.180423],
[0.212671, 0.715160, 0.072169],
[0.019334, 0.119193, 0.950227]]).to(device)
MAT_XYZ2RGB = torch.Tensor([[ 3.2405, -1.5372, -0.4985],
[-0.9693, 1.8760, 0.0416],
[ 0.0556, -0.2040, 1.0573]]).to(device)
XYZ_REF_WHITE = torch.Tensor([0.95047, 1.0, 1.08883]).to(device)
def rgb2lab(rgb):
rgb=torch.clamp(rgb,0,1)
return xyz_to_lab(rgb_to_xyz(rgb))
def lab2rgb(lab):
lab=torch.clamp(lab,0,1)
return xyz_to_rgb(lab_to_xyz(lab))
def rgb_to_xyz(rgb):
# convert dtype from uint8 to float
# xyz = rgb.astype(np.float64) / 255.0
# xyz = rgb.astype(np.float64)
xyz = rgb
# gamma correction
mask = xyz > 0.04045
abc=torch.zeros_like(xyz)
abc[mask] = ((xyz[mask] + 0.055) / 1.055)**2.4
abc[~mask] = xyz[~mask]/12.92
xyz = abc.permute(0, 2, 3, 1)
# linear transform
xyz = torch.matmul(xyz , MAT_RGB2XYZ.T)
xyz = xyz.permute(0, 3, 1, 2)
return xyz
def xyz_to_lab(xyz):
xyz=xyz.permute(0, 2, 3, 1)
xyz = xyz/XYZ_REF_WHITE
# nonlinear transform
mask = xyz > 0.008856
xyz[mask] = torch.pow(xyz[mask], 1.0 / 3.0)
xyz[~mask] = 7.787 * xyz[~mask] + 16.0 / 116.0
x, y, z = xyz[..., 0], xyz[..., 1], xyz[..., 2]
# linear transform
lab = torch.zeros_like(xyz)
# lab = torch.zeros(xyz.shape, requires_grad=True)
lab[..., 0] = (116.0 * y) - 16.0 # L channel
lab[..., 1] = 500.0 * (x - y) # a channel
lab[..., 2] = 200.0 * (y - z) # b channel
lab[..., 0] = lab[..., 0]/100 # L channel
lab[..., 1] = (lab[..., 1]+86.183030)/184.416084 # a channel
lab[..., 2] = (lab[..., 2]+107.857300)/202.335422 # b channel
lab=lab.permute(0, 3, 1, 2)
return lab
def lab_to_xyz(lab):
lab=lab.permute(0, 2, 3, 1)
l, a, b = lab[..., 0], lab[..., 1], lab[..., 2]
l=l*100
a=a*184.416084-86.183030
b=b*202.335422-107.857300
xyz = torch.zeros_like(lab)
# xyz = torch.zeros(lab.shape,requires_grad=True)
xyz[..., 1] = (l + 16.0) / 116.0
xyz[..., 0] = a / 500.0 + xyz[..., 1]
xyz[..., 2] = xyz[..., 1] - b / 200.0
# index = xyz[..., 2] < 0
# xyz[index, 2] = 0
torch.clamp(xyz, min=0.0)
# nonlinear transform
mask = xyz > 0.2068966
xyz[mask] = torch.pow(xyz[mask], 3.0)
xyz[~mask] = (xyz[~mask] - 16.0 / 116.0) / 7.787
# de-normalization
xyz = xyz*XYZ_REF_WHITE
xyz=xyz.permute(0, 3, 1, 2)
return xyz
def xyz_to_rgb(xyz):
rgb = xyz.permute(0, 2, 3, 1)
rgb = torch.matmul(rgb, MAT_XYZ2RGB.T)
# gamma correction
mask = rgb > 0.0031308
rgb[mask] = 1.055 * torch.pow(rgb[mask], 1.0 / 2.4) - 0.055
rgb[~mask] = rgb[~mask] * 12.92
# clip and convert dtype from float to uint8
# rgb = np.round(255.0 * np.clip(rgb, 0, 1)).astype(np.uint8)
rgb = torch.clip(rgb, 0, 1)
rgb = rgb.permute(0, 3, 1, 2)
return rgb
if __name__ == '__main__':
with torch.autograd.set_detect_anomaly(True):
rgb = torch.Tensor([[[0.8, 0.5, 0.5]]])
rgb.requires_grad_()
rgb = torch.unsqueeze(rgb.permute(2,0,1),0)
xzy=rgb_to_xyz(rgb)
lab=xyz_to_lab(xzy)
xzy1=lab_to_xyz(lab)
rgb1=xyz_to_rgb(xzy1)
print(rgb1)
rgb1 = rgb1.sum()
rgb1.backward()