diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..b5fa003 --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +dev +Manifest.toml \ No newline at end of file diff --git a/Project.toml b/Project.toml index b43449a..e60f7fc 100644 --- a/Project.toml +++ b/Project.toml @@ -7,13 +7,13 @@ version = "0.2.10" [deps] DocStringExtensions = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" -ManifoldsBase = "3362f125-f0bb-47a3-aa74-596ffd7ef2fb" Manifolds = "1cead3c2-87b3-11e9-0ccd-23c62b72b94e" +ManifoldsBase = "3362f125-f0bb-47a3-aa74-596ffd7ef2fb" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" [compat] DocStringExtensions = "0.8" -ManifoldsBase = "0.10, 0.11" +ManifoldsBase = "0.11" Manifolds = "0.5" StaticArrays = "1" julia = "1" diff --git a/src/LazyLieManifolds.jl b/src/LazyLieManifolds.jl index 2e3ea81..7c9fd66 100644 --- a/src/LazyLieManifolds.jl +++ b/src/LazyLieManifolds.jl @@ -1,18 +1,86 @@ -export se, SE +##============================================================================== +## Abstract Lie Groups and Manifolds +##============================================================================== + +abstract type AbstractLieGroup end +abstract type AbstractLieAlgebra end + +Base.getindex(p::AbstractLieGroup) = p.value +Base.getindex(X::AbstractLieAlgebra) = X.value + +# extend Manifolds.jl +Manifolds.affine_matrix(p::AbstractLieGroup) = affine_matrix(manifold(p), p[]) +Manifolds.screw_matrix(X::AbstractLieAlgebra) = affine_matrix(manifold(X), X[]) + + +""" + $(SIGNATURES) +""" +function manifold end + +""" + $(SIGNATURES) +""" +function _identity end + +##------------------------------------------------------------------------------ +## Extending Manifolds.jl +##------------------------------------------------------------------------------ + +function ManifoldsBase.vee(X::AbstractLieAlgebra) + M = manifold(X) + return vee(M, make_identity(M, X[]), X[]) #FIXME +end + +# we must use +# seVec = Manifolds.hat(M, p, coords) + +function Base.:∘(p::T, q::T) where T <: AbstractLieGroup + M = manifold(p) + typeof(p)(compose(M, p[], q[])) +end +function Base.inv(p::AbstractLieGroup) + M = manifold(p) + typeof(p)(inv(M, p[])) +end -# Tr0, R0 = SA[0.0; 0], SA[1.0 0; 0 1] -# p0 = ProductRepr(Tr0, R0) +function Base.:\(p::T, q::T) where T <: AbstractLieGroup + M = manifold(p) + typeof(p)(compose(M, inv(M, p[]), q[])) +end + +function Base.:/(p::T, q::T) where T <: AbstractLieGroup + M = manifold(p) + typeof(p)(compose(M, p[], inv(M, q[]))) +end + +function Base.exp(X::AbstractLieAlgebra) #look into retract with RightAction + M = manifold(X) + e = identity(M, X[]) #TODO this might not be completely correct + G = convert(AbstractLieGroup, typeof(X)) + return G(exp(M, e, X[])) +end + +function Base.log(p::AbstractLieGroup) #look into inverse_retract with RightAction + M = manifold(p) + e = identity(M, p[]) + g = convert(AbstractLieAlgebra, typeof(p)) + return g(log(M, e, p[])) +end -# t0, w0 = [0.0; 0], get_vector(M_R, R0, 0, B) -# x0 = ProductRepr(t0, w0) -# p0_ = exp(G, p0, x0) # or, exp(M, p0, x0) +function Base.log(p::T, q::T) where T <: AbstractLieGroup + M = manifold(p) + g = convert(AbstractLieAlgebra, typeof(p)) + return g(log(M, p[], q[])) +end -# t1a, w1a = [1.0; 0], get_vector(M_R, R0, 0 , B) -# x1a = ProductRepr(t1a, w1a) # Lie algebra element -# p1a = exp(G, p0, x1a) # Lie group element +##============================================================================== +## SpecialEuclidean SE{N} and se{N} +##============================================================================== +export se, SE """ $TYPEDEF @@ -23,10 +91,14 @@ Related [`se`](@ref) """ -struct SE{N, T} - p::T # Group +struct SE{N, T} <: AbstractLieGroup + value::T # Group end +#TODO assert N and/or SE(p::ProductRepr) = ... +SE{N}(p::ProductRepr) where N = SE{N, typeof(p)}(p) + +SE{N}() where N = _identity(SE{N}) function SE(R::Matrix{T}, t::Vector{T}) where T<:Real N = length(t) @@ -37,17 +109,17 @@ function SE(R::Matrix{T}, t::Vector{T}) where T<:Real p = ProductRepr(_t, _R) - return SE{N, typeof(P)}(p) + return SE{N, typeof(p)}(p) end manifold(::SE{N,T}) where {N,T} = SpecialEuclidean(N) -function _identity_SE(N::Int, ::Type{T}=Float64) where {T<:Real} - p1 = zeros(SVector{N, T}) - p2 = SMatrix{N,N,T}(one(T)I) - o = ProductRepr(p1, p2) - SE{N, typeof(o)}(o) +#Default SE{N} representation +function _identity(::Type{SE{N}}, ::Type{T}=Float64) where {N, T} + t = zeros(SVector{N, T}) + R = SMatrix{N,N,T}(one(T)I) + SE{N}(ProductRepr(t, R)) end @@ -60,58 +132,231 @@ Related [`SE`](@ref) """ -struct se{N, T} - X::T # Tangent Vector (Lie algebra, skew simetric matrix) +struct se{N, T} <: AbstractLieAlgebra + value::T # Tangent Vector (Lie algebra, skew simetric matrix) end +#TODO assert N and/or se(X::ProductRepr) = ... +se{N}(X::ProductRepr) where N = se{N, typeof(X)}(X) - -function se(X::Vector) - N = length(X) +function se{N}(X::AbstractVector) where N + l = length(X) + @assert manifold_dimension(SpecialEuclidean(N)) == l "X dimension, $l, does not match manifold dimension, $N" - for D in 2:3 - if manifold_dimension(SpecialEuclidean(D)) == N - M = SpecialEuclidean(D) - e = _identity_SE(D, eltype(X)).p - _X = hat(M, e, X) + M = SpecialEuclidean(N) + + e = _identity(SE{N}, eltype(X))[] + _X = hat(M, e, X) - return se{D, typeof(_X)}(_X) - end - end - error("Only se(2) and se(3) suppored") + return se{N}(_X) end manifold(::se{N,T}) where {N,T} = SpecialEuclidean(N) -# p0 = SE([1.0 0.0; 0 1.0], [0.0, 0.0]) -function ManifoldsBase.vee(X::se) - M = manifold(se) - return vee(M, Identity(M, X.X), X.X) -end +Base.convert(::Type{AbstractLieGroup}, ::Type{se{N, T}}) where {N,T} = SE{N} +Base.convert(::Type{AbstractLieAlgebra}, ::Type{SE{N, T}}) where {N,T} = se{N} + -# we must use -# seVec = Manifolds.hat(M, coords) -function ⊕(p::SE, X::ProductRepr) +##------------------------------------------------------------------------------ +## other operators +##------------------------------------------------------------------------------ +#TODO abstract +function ⊕(p::SE{N}, X::se{N}) where N M = manifold(p) - e = identity(M, p.p) - typeof(p)(compose(M, p.p, exp(M, e, X))) + e = identity(M, p[]) + typeof(p)(compose(M, p[], exp(M, e, X[]))) end -⊕(X::ProductRepr, p::SE) = typeof(p)(compose(manifold(p), exp(manifold(p), I_SO2, X), p.p)) +function ⊕(X::se{N}, p::SE{N}) where N + M = manifold(p) + e = identity(M, p[]) + typeof(p)(compose(M, exp(M, e, X[]), p[])) +end -# I_SO2 = ProductRepr(SA[0.0, 0.0], SA[1.0 0.0; 0 1.0]); +# ⊖ - right minus +# X = log(M, e, inv(x) ∘ y) +function ⊖(y::SE{N}, x::SE{N}) where N + M = manifold(y) + e = identity(M, y[]) + return log(M, e, inv(x) ∘ y ) +end -# M = SpecialEuclidean(2) -# X1 = hat(M, I_SO2, SA[1., 0, pi/2]); -# X2 = hat(M, I_SO2, SA[1., 0, -pi/2]); +##============================================================================== +## SpecialOrthogonal SO{N} and so{N} +##============================================================================== +export so, SO + +""" + $TYPEDEF + +Lie Group representation for `Manifolds.SpecialOrthogonal(N)` + +Related + +[`so`](@ref) +""" +struct SO{N, T} <: AbstractLieGroup + value::T # Group +end + +#TODO assert N and/or SO(p::ProductRepr) = ... +SO{N}(p::StaticMatrix{N,N,T}) where {N, T} = SO{N, typeof(p)}(p) + +SO{N}() where N = _identity(SO{N}) + +function SO(R::Matrix{T}) where T<:Real + N = size(R,1) + @assert size(R,1) == size(R,2) + + return SO{N}(SMatrix{N,N}(R)) +end + +manifold(::SO{N,T}) where {N,T} = SpecialOrthogonal(N) + + +#Default SO{N} representation +function _identity(::Type{SO{N}}, ::Type{T}=Float64) where {N, T} + R = SMatrix{N,N,T}(one(T)I) + SO{N}(R) +end + + +""" + $TYPEDEF + +Lie algebra representation for `Manifolds.SpecialOrthogonal(N)` + +Related + +[`SO`](@ref) +""" +struct so{N, T} <: AbstractLieAlgebra + value::T # Tangent Vector (Lie algebra, skew simetric matrix) +end + +#TODO assert N and/or so(X::ProductRepr) = ... +so{N}(X::StaticMatrix{N,N,T}) where {N,T} = so{N, typeof(X)}(X) + +function so{N}(X::AbstractVector) where N + l = length(X) + @assert manifold_dimension(SpecialOrthogonal(N)) == l "X dimension, $l, does not match manifold dimension, $N" + + M = SpecialOrthogonal(N) + + e = _identity(SO{N}, eltype(X))[] + _X = hat(M, e, X) + + return so{N}(_X) +end + +manifold(::so{N,T}) where {N,T} = SpecialOrthogonal(N) + + +Base.convert(::Type{AbstractLieGroup}, ::Type{so{N, T}}) where {N,T} = SO{N} +Base.convert(::Type{AbstractLieAlgebra}, ::Type{SO{N, T}}) where {N,T} = so{N} + +##============================================================================== +## RoME like functions sandbox +##============================================================================== + +# this is in the "local frame" sequential, a similar operation can be done with the group_log (but together) +function PosePose(ⁱmⱼ::SE{N}, ʷxᵢ::SE{N}, ʷxⱼ::SE{N}) where N + + ʷT̂ⱼ = ʷxᵢ ∘ ⁱmⱼ + ʲT̂ⱼ = ʷxⱼ \ ʷT̂ⱼ + + X = log(ʲT̂ⱼ) + + return vee(X) +end + + +# this is in the "global frame" e component wise on submanifolds +function PosePose_x(ⁱmⱼ::SE{N}, ʷxᵢ::SE{N}, ʷxⱼ::SE{N}) where N + M = manifold(ʷxᵢ) + + ʷT̂ⱼ = ʷxᵢ ∘ ⁱmⱼ + X = se{N}(log(M, ʷT̂ⱼ[], ʷxⱼ[])) # TODO check sign, this (currently) is the vector at ʷT̂ⱼ that points to ʷxⱼ + + return vee(X) +end + + +function Pose2Pose2(meas, wxi, wxj) + wTjhat = SE2(wxi)*SE2(meas) + jTjhat = SE2(wxj) \ wTjhat + return se2vee(jTjhat) +end + + +if false #TODO clean this up and move to tests + +using TransformUtils +using LinearAlgebra +using StaticArrays + +p0 = SE([1.0 0.0; 0 1.0], [0.0, 0.0]) +X1 = se{2}([1., 0, pi/2]) +X2 = se{2}([1., 0, -pi/2]) + +p1 = p0 ⊕ X1 + +p2 = p1 ⊕ X2 + +p3 = p1 ∘ p2 + +@time TU.PosePose(p1, p0, p2) +@time TU.PosePose_x(p1, p0, p2) + +p1 +M = [1 ,1, 0] +@time TU.PosePose(M, p0, p2) + +# @profview TU.PosePose(M, p0, p2) + +M = [rand(3) .* [2, 2, 2pi] .- [1, 1, pi] for i =1:1000000] + +@time r = TU.PosePose.(M, Ref(p0), Ref(p2)) +# ProfileView.@profview TU.PosePose.(M, Ref(p0), Ref(p2)) + + +SE{3}() + +p0 = TU._identity(SE{3}) +X1 = se{3}([1., 0, 0, pi/2, 0, 0]) +X2 = se{3}([1., 0, 0, -pi/2, 0, 0]) +p1 = p0 ⊕ X1 +p2 = p1 ⊕ X2 + +# @code_warntype exp(X1) +log(p2) +log(p1, p2) -# p1 = p0 ⊕ X1 -# p2 = p1 ⊕ X ## -# \ No newline at end of file + +p0 = SO([1.0 0.0; 0 1.0]) +X1 = so{2}([pi/2]) +X2 = se{2}([1., 0, -pi/2]) + +# p1 = p0 ⊕ X1 +# p2 = p1 ⊕ X2 +# p3 = p1 ∘ p2 + +SO{5}() + +p0 = TU._identity(SO{3}) +X1 = so{3}([pi/2, 0, 0]) +X2 = so{3}([-pi/2, 0, 0]) + +log(p2) +log(p1, p2) + + + +end