-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbg_and_probOri.py
200 lines (170 loc) · 8.27 KB
/
bg_and_probOri.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("outdir", type=str, help="this folder will be the emc input folder")
parser.add_argument("quat", type=str, help="path to the quaternion grid file")
parser.add_argument("input", type=str, help="path to input file created with simemc.utils.save_expt_refl_file")
parser.add_argument("--ndev", type=int, help="number of gpu devices (default=1)", default=1)
parser.add_argument("--geom", type=str, default=None, help="optional expt file for reference detector geom. If not provided, det. geom. is taken from first .expt")
parser.add_argument("--num", type=int, default=None, help="Max num inputs to process")
parser.add_argument("--mask", type=str, default=None, help="path to the DIALs mask file")
parser.add_argument("--how", type=str, default="median", choices=["median", "mean"], help="Method for computing radial signal (default=Median, alternative=Mean)")
parser.add_argument("--minpred", type=int, default=4, help="minimum number of strong spots that need to be predicted well by an orientation for it to be flagged as probable for the shots crystal")
parser.add_argument("--hcut", type=float, default=0.12, help="maximum distance (in hkl units) to Bragg peaks from prediction for prediction Bragg peak to be considered part of the lattice ")
parser.add_argument("--maxProbOri", default=None, type=int, help="If provided, then whenever a shot has more probable orientations than this quantity, hcut is decreased and min_pred is increased"
"until the shot has at most maxProbOri probable orientations ")
args = parser.parse_args()
from libtbx.mpi4py import MPI
COMM = MPI.COMM_WORLD
import numpy as np
import h5py
import os
import time
from dials.array_family import flex
from dxtbx.model import ExperimentList
from simtbx.diffBragg.utils import strip_thickness_from_detector, load_mask, image_data_from_expt
from simemc.sim_const import CRYSTAL
from simemc.compute_radials import RadPros
from simemc import utils
from simemc import mpi_utils
from simemc.mpi_utils import print0, printRf
from simemc.emc import probable_orients
def main():
hcut = args.hcut #0.12
min_pred = args.minpred #4
outdir = args.outdir
quat_file = args.quat
input_file=args.input
num_gpu_dev = args.ndev
max_num_strong_spots = 1000
num_process = args.num
qmin = 1/40.
qmax = 1/4.
# constants
img_sh = 2527, 2463
numQ = 256
num_radial_bins = 500
gpu_device = COMM.rank % num_gpu_dev
mpi_utils.make_dir(outdir)
outfile = os.path.join(outdir, "emc_input%d.h5" %COMM.rank)
rotMats, rotMatWeights = utils.load_quat_file(quat_file)
expt_names, refl_names = utils.load_expt_refl_file(input_file)
if num_process is not None:
expt_names = expt_names[:num_process]
refl_names = refl_names[:num_process]
assert COMM.size <= len(expt_names)
shot_num_rank = np.array_split(np.arange(len(expt_names)), COMM.size)[COMM.rank]
Qx = Qy = Qz = None
detector = beam = None
if COMM.rank==0:
if args.geom is not None:
dummie_expt = ExperimentList.from_file(args.geom, False)[0]
else:
dummie_expt = ExperimentList.from_file(expt_names[0], False)[0]
detector = dummie_expt.detector
detector = strip_thickness_from_detector(detector)
beam = dummie_expt.beam
qmap = utils.calc_qmap(detector, beam)
Qx,Qy,Qz = map(lambda x: x.ravel(), qmap)
detector = COMM.bcast(detector)
beam = COMM.bcast(beam)
Qx = COMM.bcast(Qx)
Qy = COMM.bcast(Qy)
Qz = COMM.bcast(Qz)
Qmag = np.sqrt( Qx**2 + Qy**2 + Qz**2)
qbins = np.linspace( -qmax, qmax, numQ + 1)
sel = np.logical_and(Qmag > qmin, Qmag < qmax)
qXYZ = Qx[sel], Qy[sel], Qz[sel]
print0("Found %d experiment files total, dividing across ranks" % len(expt_names), flush=True)
# TODO: this script assumes a single panel image format, generalizing is trivial, but should be done
# make the probable orientation identifier
O = probable_orients()
O.allocate_orientations(gpu_device, rotMats.ravel(), max_num_strong_spots)
radProMaker = None
correction = None
MASK = None
if COMM.rank==0:
if args.mask is not None:
MASK = load_mask(args.mask)
MASK = COMM.bcast(MASK)
# NOTE: assume one knows the unit cell:
O.Bmatrix = CRYSTAL.get_B()
with h5py.File(outfile, "w") as OUT:
num_shots = len(shot_num_rank) # number of shots to load on this rank
prob_rot_dset = OUT.create_dataset(
name="probable_rot_inds", shape=(num_shots,),
dtype=h5py.vlen_dtype(int))
bg_dset = OUT.create_dataset(
name="background", shape=(num_shots,num_radial_bins))
num_shots_with_no_prob_ori = 0
for i_f, i_shot in enumerate(shot_num_rank):
expt_f = expt_names[i_shot]
refl_f = refl_names[i_shot]
El = ExperimentList.from_file(expt_f, True)
data = image_data_from_expt(El[0])
R = flex.reflection_table.from_file(refl_f)
R.centroid_px_to_mm(El)
R.map_centroids_to_reciprocal_space(El)
##########################
# Get the background image
##########################
if radProMaker is None:
print0("Creating radial profile maker!", flush=True)
# TODO: add support for per-shot wavelength
refGeom = {"D": detector, "B": beam}
radProMaker = RadPros(refGeom, numBins=num_radial_bins)
radProMaker.polarization_correction()
radProMaker.solidAngle_correction()
correction = radProMaker.POLAR * radProMaker.OMEGA
correction /= np.mean(correction)
if MASK is not None:
radProMaker.mask = MASK
t = time.time()
data *= correction
use_median=args.how=="median"
radialProfile = radProMaker.makeRadPro(
data_pixels=data,
strong_refl=R,
apply_corrections=False, use_median=use_median)
tbg = time.time()-t
####################################
# Get the probable orientations list
####################################
t = time.time()
qvecs = R['rlp'].as_numpy_array()
verbose_flag = False #COMM.rank==0
if args.maxProbOri is not None:
num_prob_ori = np.inf
_hcut = hcut
_min_pred = min_pred
trials = 0
while num_prob_ori > args.maxProbOri:
prob_rot = O.orient_peaks(qvecs.ravel(), _hcut, _min_pred, verbose_flag)
num_prob_ori = len(prob_rot)
if trials > 0:
printRf("%d ori. with hcut=%f and minpred=%d" % ( num_prob_ori, _hcut, _min_pred))
trials += 1
_min_pred += 1
else:
prob_rot = O.orient_peaks(qvecs.ravel(), hcut, min_pred, verbose_flag)
tori = time.time()-t
### Save stuff
if len(prob_rot) == 0:
num_shots_with_no_prob_ori += 1
prob_rot_dset[i_f] = prob_rot
bg_dset[i_f] = radialProfile
print0("(%d/%d) bkgrnd est. took %.4f sec, prob. ori. est. %.4f sec . %d prob ori from %d strong spots."
% (i_f+1, num_shots, tbg, tori, len(prob_rot), len(qvecs)), flush=True)
OUT.create_dataset("background_img_sh", data=radProMaker.img_sh)
OUT.create_dataset("all_Qbins", data=radProMaker.all_Qbins)
OUT.create_dataset("polar", data=radProMaker.POLAR)
OUT.create_dataset("omega", data=radProMaker.OMEGA)
OUT.create_dataset("correction", data=correction)
Es = [expt_names[i] for i in shot_num_rank]
Rs = [refl_names[i] for i in shot_num_rank]
for dset_name, lst in [("expts", Es), ("refls", Rs)]:
dset = OUT.create_dataset(dset_name, shape=(num_shots,), dtype=h5py.string_dtype(encoding="utf-8"))
dset[:] = lst
COMM.barrier()
printRf("Num shots with 0 prob ori = %d" % num_shots_with_no_prob_ori)
if __name__=="__main__":
main()