-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
1250 lines (1072 loc) · 45.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import itertools
import time
from itertools import groupby
import os
import numpy as np
from scipy.spatial.transform import Rotation
from scipy.spatial import cKDTree, distance
from scipy.ndimage import generate_binary_structure, iterate_structure, map_coordinates
from scipy.interpolate import RegularGridInterpolator
from scipy import ndimage as nd
from scipy import ndimage as ni
import sympy
from simtbx.diffBragg import utils as db_utils
from cctbx import crystal
from scitbx.matrix import sqr
from libtbx.phil import parse
from cctbx import miller
from dxtbx.model import ExperimentList
from dials.command_line.stills_process import phil_scope
from dials.algorithms.spot_finding.factory import SpotFinderFactory
from dials.array_family import flex
from dials.algorithms.spot_finding.factory import FilterRunner
from dials.model.data import PixelListLabeller, PixelList
from dials.algorithms.spot_finding.finder import pixel_list_to_reflection_table
from simemc.compute_radials import RadPros
from simemc import sim_const
try:
from simemc.emc import lerpy
from simemc.emc import probable_orients
except ImportError:
lerpy = None
probable_orients = None
LOGNAME = "simemc.ranklog"
def ucell_and_symbol(ucell_p, symbol):
if ucell_p is None:
ucell_p = sim_const.CRYSTAL.get_unit_cell().parameters()
if symbol is None:
symbol = sim_const.CRYSTAL.get_space_group().info().type().lookup_symbol()
return ucell_p, symbol
def get_BO_matrix(ucell_p, symbol):
"""
The BO matrix multiplies a q-vector and give the miller index in its primitive setting
:param ucell_p: unit cell 6-tuple (a,b,c,alpha,beta,gamma) in Angstroms/degrees
:param symbol: space group lookup symbol e.g. C2221
:return: 3,3 matrix as numpy array
To get the primitive setting miller index use: hkl = np.dot(BO, [qx,qy,qz])
"""
crys_sym = crystal.symmetry(ucell_p, symbol)
cbo = crys_sym.change_of_basis_op_to_primitive_setting()
ucell = crys_sym.unit_cell()
Bmatrix = np.reshape(ucell.orthogonalization_matrix(), (3, 3))
Omatrix = np.reshape(cbo.c_inv().r().transpose().as_double(), (3,3))
BO = np.dot(Bmatrix, Omatrix.T).T
return BO
def get_hkl_max(max_q, BO):
"""
:param max_q:
:param BO:
:return:
"""
# find maximum miller indices in grid
hkls_at_corner = []
for qvec in itertools.product(*[[max_q, -max_q]] * 3):
hkl = np.dot(BO, qvec)
hkls_at_corner.append(hkl)
max_hkl = np.max(hkls_at_corner, axis=0).astype(int)
return max_hkl
def voxel_resolution(dens_dim, max_q):
QBINS = np.linspace(-max_q, max_q, dens_dim+1)
QCENT = (QBINS[:-1] +QBINS[1:])*.5
qX,qY,qZ = np.meshgrid(*([QCENT]*3), indexing='ij')
qmag =np.sqrt( qX**2 + qY**2 + qZ**2)
with np.errstate(divide='ignore'):
dspace = 1/qmag
return dspace
def get_primitive_vectors(ucell_p, symbol):
"""
:param ucell_p: unit cell 6-tuple (a_Ang, b_Ang, c_Ang, alpha_deg, beta_deg, gamma_deg)
:param symbol: lookupsymbol e.g. C2221
:return: the primitive vectors defining the crystal (in real space)
"""
crys_sym = crystal.symmetry(ucell_p, symbol)
cbo = crys_sym.change_of_basis_op_to_primitive_setting()
crys_sym_prim = crys_sym.change_basis(cbo)
ucell = crys_sym.unit_cell()
ucell_prim = crys_sym_prim.unit_cell()
Orth = np.reshape(ucell_prim.orthogonalization_matrix(), (3, 3))
B = np.reshape(ucell.orthogonalization_matrix(), (3, 3))
Omatrix = np.reshape(cbo.c_inv().r().transpose().as_double(), (3,3))
a1, a2, a3 = Orth[:, 0], Orth[:, 1], Orth[:, 2]
return (a1,a2,a3)
def whole_punch_W(dens_dim, max_q, width=1, ucell_p=None, symbol=None):
"""
set all values far from the Bragg peaks to 0
:param width: increase the width to increase the size of the Bragg peaks
The unit is arbitrary, 0 would is a single pixel at every Bragg peaks
1 keeps 17(?) pixels at every Bragg peak
:return: binaryt mask, 0s in between the Bragg reflections
"""
ucell_p, symbol = ucell_and_symbol(ucell_p, symbol)
BO = get_BO_matrix(ucell_p, symbol)
max_h, max_k, max_l = get_hkl_max(max_q, BO)
hvals = np.arange(-max_h+1, max_h,1)
kvals = np.arange(-max_k+1, max_k,1)
lvals = np.arange(-max_l+1, max_l,1)
hkl_grid = np.meshgrid(hvals, kvals, lvals, indexing='ij')
hkl_grid = np.array(hkl_grid)
BOinv = np.round(np.linalg.inv(BO), 8)
# find the q-values of the whole miller-indices
qa_vals, qb_vals, qc_vals = np.dot(hkl_grid.T, BOinv.T).T
QBINS = np.linspace(-max_q, max_q, dens_dim+1)
QCENT = (QBINS[:-1] +QBINS[1:])*.5 # center of each voxel
aidx = np.array([np.argmin(np.abs(QCENT-a)) for a in qa_vals.ravel()])
bidx = np.array([np.argmin(np.abs(QCENT-b)) for b in qb_vals.ravel()])
cidx = np.array([np.argmin(np.abs(QCENT-c)) for c in qc_vals.ravel()])
Imap = np.zeros((dens_dim, dens_dim, dens_dim),bool)
Imap[aidx, bidx, cidx] = True
Imap = ni.binary_dilation(Imap.astype(bool), iterations=width)
Imap = Imap.reshape((dens_dim,dens_dim,dens_dim))
return Imap
def round_to(rounds, values):
I = np.searchsorted(rounds, values)
rounds_p = np.pad(rounds, 1, mode='edge')
rounded = np.vstack([rounds_p[I], rounds_p[I+1]])
residues = rounded - values
J = np.argmin(np.abs(residues), axis=0)
return J
def integrate_W2(W, max_q, ucell_p=None, symbol=None, order=3):
ucell_p, symbol = ucell_and_symbol(ucell_p, symbol)
BO = get_BO_matrix(ucell_p, symbol)
max_h,max_k,max_l = get_hkl_max(max_q, BO)
hvals = np.arange(-max_h+1, max_h,1)
kvals = np.arange(-max_k+1, max_k,1)
lvals = np.arange(-max_l+1, max_l,1)
hkl_grid = np.meshgrid(hvals, kvals, lvals, indexing='ij')
hkl_grid = np.array(hkl_grid)
BOinv = np.round(np.linalg.inv(BO), 8)
# find the q-values of the whole miller-indices
qa_vals, qb_vals, qc_vals = np.dot(hkl_grid.T, BOinv.T).T
xmin, xmax = get_xmin_xmax(max_q, W.shape[0])
(ca,cb,cc), (del_qa, del_qb, del_qc) = corners_and_deltas(W.shape, xmin, xmax)
qa_inds = (qa_vals-ca) / del_qa
qb_inds = (qb_vals-cb) / del_qb
qc_inds = (qc_vals-cc) / del_qc
out = map_coordinates(W, [qa_inds, qb_inds , qc_inds], order=order)
H, K, L = map(lambda x: x.ravel(), hkl_grid.astype(np.int32))
hkl_inds = list(map(tuple, np.vstack((H, K, L)).T))
flex_hkl = flex.miller_index(hkl_inds)
sym = crystal.symmetry(ucell_p, symbol)
mset = miller.set(sym, flex_hkl , True)
intens_dat = flex.double(out.ravel())
ma = miller.array(mset, intens_dat)
return ma
def get_p1_ucell(ucell, sym):
sym = crystal.symmetry(ucell, sym)
to_p1 = sym.change_of_basis_op_to_primitive_setting()
sym_p1 = sym.change_basis(to_p1)
p1_ucell = sym_p1.unit_cell().parameters()
return p1_ucell
def integrate_W(W, dens_dim, max_q, ucell_p=None, symbol=None, order=None, kernel_iters=None, conn=2):
ucell_p, symbol = ucell_and_symbol(ucell_p, symbol)
BO = get_BO_matrix(ucell_p, symbol)
max_h,max_k,max_l = get_hkl_max(max_q, BO)
hvals = np.arange(-max_h+1, max_h,1)
kvals = np.arange(-max_k+1, max_k,1)
lvals = np.arange(-max_l+1, max_l,1)
hkl_grid = np.meshgrid(hvals, kvals, lvals, indexing='ij')
hkl_grid = np.array(hkl_grid)
BOinv = np.round(np.linalg.inv(BO), 8)
# find the q-values of the whole miller-indices
qa_vals, qb_vals, qc_vals = np.dot(hkl_grid.T, BOinv.T).T
QBINS = np.linspace(-max_q, max_q, dens_dim+1)
QCENT = (QBINS[:-1] +QBINS[1:])*.5 # center of each voxel
qcorner = np.sqrt(3)*max_q
sel = (np.abs(qa_vals) < qcorner) * (np.abs(qb_vals) < qcorner) * (np.abs(qc_vals) < qcorner)
all_vals = [qa_vals[sel], qb_vals[sel], qc_vals[sel]]
all_pos = [np.searchsorted(QCENT, vals) for vals in all_vals]
selA = (all_pos[0] < dens_dim) * (all_pos[1] < dens_dim) * (all_pos[2] < dens_dim)
selB = (all_pos[0] >0) * (all_pos[1] >0) * (all_pos[2] >0)
selAB = selA * selB
all_inds = []
for pos, vals in zip(all_pos, all_vals):
qvals = vals[selAB]
qpos = pos[selAB]
left = np.abs(QCENT[qpos-1] - qvals)
right = np.abs(QCENT[qpos] - qvals)
left_or_right_choice = np.argmin(list(zip(left, right)), axis=1)
inds = [qpos[i]-1 if choice == 0 else qpos[i] for i, choice in enumerate(left_or_right_choice)]
all_inds.append(inds)
aidx, bidx, cidx = all_inds
all_hvals, all_kvals, all_lvals = map(lambda x: x[sel][selAB], hkl_grid)
if kernel_iters is not None:
# create a kernel for integrating each peak in the 3-d map
base_kernel = generate_binary_structure(3,conn) # 3 dimensional kernel
kernel = iterate_structure(base_kernel, kernel_iters) # enlargen kernel to bring in more neighboring voxels
ksz = int(kernel.shape[0]/2) # kernel always has odd dimension
# iterate over peaks and integrate using the kernel
hkls = flex.miller_index()
data = flex.double()
for i1, i2, i3, h, k, l in zip(aidx, bidx, cidx, all_hvals, all_kvals, all_lvals):
i1_slc = slice(i1-ksz, i1+ksz+1,1)
i2_slc = slice(i2-ksz, i2+ksz+1,1)
i3_slc = slice(i3-ksz, i3+ksz+1,1)
peakRegion = W[i1_slc, i2_slc, i3_slc] # region around one peak, same shape as kernel
integrated_val = peakRegion[kernel].sum()
data.append(np.float64(integrated_val))
hkls.append((int(h), int(k), int(l)))
p1_ucell = get_p1_ucell(ucell_p, symbol)
p1_sym = crystal.symmetry(p1_ucell, "P1")
p1_mset = miller.set(p1_sym, hkls, True)
# get the operator to gor from this space group defined by `symbol` to P1
sym = crystal.symmetry(ucell_p, symbol)
op_to_p1 = sym.change_of_basis_op_to_primitive_setting()
# apply operator
mset = p1_mset.change_basis(op_to_p1.inverse())
mset = miller.set(sym, mset.indices(), True)
ma = miller.array(mset, data)
ma = ma.set_observation_type_xray_intensity()
return ma
elif order is not None:
out = map_coordinates(W, [aidx, bidx, cidx], order=order)
hkl_inds = list(map(tuple, np.vstack((all_hvals, all_kvals, all_lvals)).T.astype(np.int32)))
flex_hkl = flex.miller_index(hkl_inds)
intens_dat = flex.double(out.ravel())
sym = crystal.symmetry(ucell_p, symbol)
mset = miller.set(sym, flex_hkl , True)
ma = miller.array(mset, intens_dat)
ma = ma.set_observation_type_xray_intensity()
return ma
else:
#aidx = [np.argmin(np.abs(QCENT-a)) for a in qa_vals.ravel()]
#bidx = [np.argmin(np.abs(QCENT-b)) for b in qb_vals.ravel()]
#cidx = [np.argmin(np.abs(QCENT-c)) for c in qc_vals.ravel()]
#all_hvals, all_kvals, all_lvals = map(lambda x: x.ravel(), hkl_grid)
assert len(all_hvals) == len(aidx)
Ivals = []
hkl_idx = []
for h,k,l,a,b,c in zip(all_hvals, all_kvals, all_lvals, aidx, bidx, cidx):
try:
val = W[a,b,c] + W[a-1,b,c] + W[a+1,b,c] + \
W[a,b-1,c] + W[a,b+1,c] + W[a,b,c-1] + W[a,b,c+1]
except IndexError:
continue
hkl_idx.append( (h,k,l))
Ivals.append(val)
return hkl_idx, Ivals
def get_W_init(dens_dim, max_q, ndom=20, ucell_p=None, symbol=None):
"""
Get an initial guess of the density
:param ndom: number of unit cells along crystal a-axis
Increase this parameter to make the gaussian falloff stronger.
The other two crystal axes wil have ndom such that the overall
shape is spherical.
:return: Density estimate
"""
ucell_p, symbol = ucell_and_symbol(ucell_p, symbol)
BO = get_BO_matrix(ucell_p, symbol)
astar, bstar, cstar = np.linalg.norm(np.linalg.inv(BO),axis=0)
QBINS = np.linspace(-max_q, max_q, dens_dim+1)
qbin_cent = (QBINS[:-1] +QBINS[1:])*.5
qXYZ = np.array(np.meshgrid(qbin_cent,qbin_cent,qbin_cent, indexing='ij'))
qXYZ = qXYZ.reshape((3,-1))
chunksize=1000
Wsplit = np.array_split(qXYZ.T, qXYZ.shape[1] / chunksize)
all_frac_hkls = []
for Wchunk in Wsplit:
frac_hkls = np.dot(Wchunk, BO.T).T
all_frac_hkls.append(frac_hkls)
frac_h, frac_k, frac_l = np.hstack(all_frac_hkls).reshape((3,dens_dim, dens_dim, dens_dim))
# the above code is equivalent to the following, however the following has sttep RAM requirements, making it usually slow when dens_dim gets large
#frac_h, frac_k, frac_l = np.dot(qXYZ.T, BO.T).T
H = np.ceil(frac_h-0.5)
K = np.ceil(frac_k-0.5)
L = np.ceil(frac_l-0.5)
na = ndom
nb = ndom *bstar/astar
nc = ndom *cstar/astar
del_h = H-frac_h
del_k = K-frac_k
del_l = L-frac_l
hkl_rad_sq = na**2*del_h**2 + nb**2*del_k**2 + nc**2*del_l**2
W_init = np.exp(-hkl_rad_sq*2/0.63)
return W_init
def init_from_mtz(mtzname, dens_dim, max_q, ucell_p, symbol, kernel_iters=2, conn=2, mtzlabel=None, sigma=1):
"""
:param mtzname:
:param dens_dim:
:param max_q:
:param ucell_p:
:param symbol:
:param kernel_iters:
:param conn:
:param mtzlabel:
:param sigma:
:return:
"""
F = db_utils.open_mtz(mtzname, mtzlabel) # returns a cctbx.miller.array object
if F.observation_type() != "xray.amplitude":
F = F.as_amplitude_array()
else:
assert np.min(F.data()) >= 0
F = F.expand_to_p1().generate_bijvoet_mates()
Fmap = {h: val for h, val in zip(F.indices(), F.data())}
BO = get_BO_matrix(ucell_p, symbol)
max_h, max_k, max_l = get_hkl_max(max_q, BO)
hvals = np.arange(-max_h + 1, max_h, 1)
kvals = np.arange(-max_k + 1, max_k, 1)
lvals = np.arange(-max_l + 1, max_l, 1)
hkl_grid = np.meshgrid(hvals, kvals, lvals, indexing='ij')
hkl_grid = np.array(hkl_grid)
BOinv = np.round(np.linalg.inv(BO), 8)
# find the q-values of the whole miller-indices
Qabc_grid = np.dot(hkl_grid.T, BOinv.T).T
# for each of these q vectors, we need to find the corresponding nearest voxel
QBINS = np.linspace(-max_q, max_q, dens_dim + 1)
QCENT = (QBINS[:-1] + QBINS[1:]) * .5 # center of each voxel
Qpts = np.array( [x.ravel() for x in Qabc_grid]).T
Qinds = np.arange(0, dens_dim)
QX,QY,QZ = [RegularGridInterpolator((QCENT, QCENT, QCENT), coord, bounds_error=False, method='nearest', fill_value=None) \
for coord in np.meshgrid(Qinds, Qinds, Qinds, indexing='ij')]
closest_grid_pt = np.vstack([QX(Qpts), QY(Qpts), QZ(Qpts)]).T
aidx, bidx, cidx = np.array([x.astype(np.int32) for x in closest_grid_pt.T])
all_hvals, all_kvals, all_lvals = map(lambda x: x.ravel(), hkl_grid)
# initial density
D = np.zeros((dens_dim, dens_dim, dens_dim))
# create a kernel for integrating each peak in the 3-d map
base_kernel = ni.generate_binary_structure(3, conn) # 3 dimensional kernel
kernel = ni.iterate_structure(base_kernel, kernel_iters) # enlargen kernel to bring in more neighboring voxels
ksz = int(kernel.shape[0] / 2) # kernel always has odd dimension
for i_peak, (i1, i2, i3, h, k, l) in enumerate(zip(aidx, bidx, cidx, all_hvals, all_kvals, all_lvals)):
hkl = h,k,l
if hkl not in Fmap:
continue
i1_slc = slice(i1 - ksz, i1 + ksz + 1, 1)
i2_slc = slice(i2 - ksz, i2 + ksz + 1, 1)
i3_slc = slice(i3 - ksz, i3 + ksz + 1, 1)
try:
peak = D[i1_slc, i2_slc, i3_slc] # region around one peak, same shape as kernel
except IndexError:
continue
# replace peak with a gaussian
Z, Y, X = np.indices(peak.shape)
Ihkl = Fmap[hkl]**2
exp_arg = -((Z - ksz) ** 2 + (Y-ksz)**2 + (X-ksz)**2) / 2 / sigma ** 2
Gxyz = np.exp(exp_arg) * Ihkl
D[i1_slc, i2_slc, i3_slc] += Gxyz
if i_peak % 1000 == 0:
print("Filling gaussian peak %d / %d" % (i_peak + 1, len(aidx)))
return D
def corners_and_deltas(shape, x_min, x_max):
"""
:param shape: shape of the densities array (3dim)
:param x_min: vector to lower voxel center
:param x_max: vector to upper voxel center
:return: corners and deltas to be passed to tri
"""
shape = np.array(shape)
x_min = np.atleast_1d(np.array(x_min))
x_max = np.atleast_1d(np.array(x_max))
if len(x_min) == 1:
x_min = np.squeeze(np.array([x_min, x_min, x_min]))
if len(x_max) == 1:
x_max = np.squeeze(np.array([x_max, x_max, x_max]))
deltas = (x_max - x_min) / (shape - 1)
corners = x_min
corners = corners.astype(np.float64)
deltas = deltas.astype(np.float64)
return corners, deltas
def load_quat_file(quat_file):
"""
Load the data file written by Ti-Yen's quaternion grid sampler
"""
try:
quat_data = np.loadtxt(quat_file, skiprows=1)
except UnicodeDecodeError:
num_quat = np.fromfile(quat_file, np.int32, 1)[0]
quat_data = np.fromfile(quat_file, np.float64, offset=4)
quat_data = quat_data.reshape((num_quat, 5))
# Convert these quats to rotation matrices using scipy
rotMats = Rotation.from_quat(quat_data[:, :4]).as_matrix()
weights = quat_data[:,4]
return rotMats, weights
def load_qmap(qmap_file, as_1d=True):
"""
:param qmap_file: path to a qmap.npy file created by save_qmap
:param as_1d: bool, return as 1d arrays if True, else return as 2D arrays (same shape as detector)
: returns: numpy arrays specifying the rlp of every pixel
"""
if as_1d:
Qx, Qy, Qz = map( lambda x: x.ravel(), np.load(qmap_file) )
else:
Qx, Qy, Qz = np.load(qmap_file)
return Qx, Qy, Qz
def get_data_with_bg_removed(expt, phil_file, radProMaker=None, renorm=None, return_radProMaker=False):
"""
subtract an azimuthally isotropic background from a detector image
:param expt: dxtbx experiment object
:param phil_file: path to strong spots phil file
:param radProMaker: instance of radial profile maker, will be created if None
:param renorm: float, if True, then renormalize the data after correcting for solid angle and polarization. For the simemc data in particular, set this to 100 for sensible units
:returns: the background subtracted , polarization corrected data, optionally with the RadPros instance
"""
# make if None
if radProMaker is None:
refGeom = {"D": expt.detector, "B": expt.beam}
radProMaker = RadPros(refGeom)
radProMaker.polarization_correction()
radProMaker.solidAngle_correction()
# load the strong spot phil, for finding spots and removing them
# prior to fitting the radial profile
phil_str = open(phil_file, "r").read()
user_phil = parse(phil_str)
phil_sources = [user_phil]
working_phil, unused = phil_scope.fetch(sources=phil_sources, track_unused_definitions=True)
params = working_phil.extract()
# load the data from the experiment
data = expt.imageset.get_raw_data(0)[0].as_numpy_array()
data *= (radProMaker.POLAR[0] * radProMaker.OMEGA[0])
if renorm is not None:
data /= data.max()
data *= renorm
# estimate the radial profile
radialProfile = radProMaker.makeRadPro(
data_pixels=np.array([data]),
strong_params=params,
apply_corrections=False)
# get the azimuthally symetric background image
BGdata = radProMaker.expand_radPro(radialProfile)[0]
# subtract the background
data = data-BGdata
if return_radProMaker:
return data, radProMaker
else:
return data
def insert_slice(K_t, qvecs, qbins):
"""
:param K_t: ndarray, shape (N,), data pixels (2D slice of 3d volume)
:param qvecs: ndarray shape (N,3) qvectors
:param qbins: qbins , shape (M,), bin edges defining 3d reciprocal space
:return: 3d intensity with K_t inserted as a slice, shape (M,M,M)
"""
assert qvecs.shape[1]==3
assert K_t.shape[0] == qvecs.shape[0]
qsampX, qsampY, qsampZ = qvecs.T
qsamples = qsampX, qsampY, qsampZ
counts = np.histogramdd( qsamples, bins=[qbins, qbins, qbins])[0]
vals = np.histogramdd( qsamples, bins=[qbins, qbins, qbins], weights=K_t)[0]
with np.errstate(divide='ignore', invalid='ignore'):
result = np.nan_to_num(vals / counts)
return result
def save_qmap(output_file, Det, Beam):
qmap = calc_qmap(Det, Beam)
np.save(output_file, qmap)
def calc_qmap(Det, Beam):
"""
Qmap shape is (3, num_panels, slow_dim, fast_dim)
Its assumed all pixels are square, and all panels have same slow,fast dims
:param Det: dxtbx Detector model
:param return_qmap: if true, return the qmap after computing
:param Beam: dxtbx Beam model
"""
# TODO generalize for panel thickness
panel_fdim, panel_sdim = Det[0].get_image_size()
num_panels = len(Det)
image_sh = num_panels, panel_sdim, panel_fdim
Ki = np.array(Beam.get_unit_s0())
wave = Beam.get_wavelength()
qmap = np.zeros( (3,) + (image_sh))
for pid in range(num_panels):
F = np.array(Det[pid].get_fast_axis())
S = np.array(Det[pid].get_slow_axis())
O = np.array(Det[pid].get_origin())
J,I = np.indices((panel_sdim, panel_fdim))
pxsize = Det[pid].get_pixel_size()[0]
Kx = O[0] + I*F[0]*pxsize + J*S[0]*pxsize
Ky = O[1] + I*F[1]*pxsize + J*S[1]*pxsize
Kz = O[2] + I*F[2]*pxsize + J*S[2]*pxsize
Kmag = np.sqrt(Kx**2 + Ky**2 + Kz**2)
Kx /= Kmag
Ky /= Kmag
Kz /= Kmag
Qx = 1./wave * (Kx-Ki[0])
Qy = 1./wave * (Ky-Ki[1])
Qz = 1./wave * (Kz-Ki[2])
qmap[0,pid,:,:] = Qx
qmap[1,pid,:,:] = Qy
qmap[2,pid,:,:] = Qz
return qmap
def stills_process_params_from_file(phil_file):
"""
:param phil_file: path to phil file for stills_process
:return: phil params object
"""
phil_file = open(phil_file, "r").read()
user_phil = parse(phil_file)
phil_sources = [user_phil]
working_phil, unused = phil_scope.fetch(
sources=phil_sources, track_unused_definitions=True)
params = working_phil.extract()
return params
def save_expt_refl_file(filename, expts, refls, check_exists=False):
"""
Save an input file for bg_and_probOri (the EMC initializer script)
expt and refl names will be given absolute paths
:param filename: input expt_refl name to be written (passable to script bg_and_probOri.py)
:param expts: list of experiments
:param refls: list of reflection tables
:param check_exists: ensure files actually exist
:return:
"""
with open(filename, "w") as o:
for expt, refl in zip(expts, refls):
expt = os.path.abspath(expt)
refl = os.path.abspath(refl)
if check_exists:
assert os.path.exists(expt)
assert os.path.exists(refl)
o.write("%s %s\n" % (expt, refl))
def load_expt_refl_file(input_file):
"""
:param input_file: file created by method save_expt_refl_file
:return: two lists, one for expts, one for refls
"""
expts,refls = [],[]
lines = open(input_file, "r").readlines()
for l in lines:
l = l.strip().split()
assert(len(l)==2)
expt,refl = l
assert os.path.exists(expt)
assert os.path.exists(refl)
expts.append(expt)
refls.append(refl)
return expts, refls
def load_geom(input_geo, strip_thick=True):
"""
:param input_geo: experiment list file containing a detector and beam model
:param strip_thick: if True, return a detector with no panel depth
:return: (dxtbx detector, dxtbx beam)
"""
El = ExperimentList.from_file(input_geo, False)
DETECTOR = El.detectors()[0]
if strip_thick:
DETECTOR = db_utils.strip_thickness_from_detector(DETECTOR)
BEAM = El.beams()[0]
return DETECTOR, BEAM
class RotInds(dict):
#def __init__(self, *args, **kwargs):
# super().__init__(*args, **kwargs)
def add_record(self, rot_ind, i_data, rank, P_dr):
if rot_ind not in self:
self[rot_ind] = {}
self[rot_ind]["i_data"] = []
self[rot_ind]["rank"] = []
self[rot_ind]["P_dr"] = []
self[rot_ind]["i_data"].append(i_data)
self[rot_ind]["rank"].append(rank)
self[rot_ind]["P_dr"].append(P_dr)
def iter_record(self, rot_ind):
rec = self[rot_ind]
for i_data, rank, P_dr in zip(rec["i_data"], rec["rank"], rec["P_dr"]):
yield i_data, rank, P_dr
def merge(self, other):
for rot_ind in other:
if rot_ind not in self:
self[rot_ind] = {}
self[rot_ind]['i_data'] = []
self[rot_ind]['rank'] = []
self[rot_ind]['P_dr'] = []
self[rot_ind]['i_data'] += other[rot_ind]['i_data']
self[rot_ind]['rank'] += other[rot_ind]['rank']
self[rot_ind]['P_dr'] += other[rot_ind]['P_dr']
@property
def on_one_rank(self):
inds = []
for rot_ind in self:
ranks = self[rot_ind]['rank']
if len(set(ranks)) == 1:
inds.append(rot_ind)
return set(inds)
@property
def on_multiple_ranks(self):
inds = []
for rot_ind in self:
ranks = self[rot_ind]['rank']
if len(set(ranks)) > 1:
inds.append(rot_ind)
return set(inds)
def tomogram_sends_and_recvs(self):
"""
Instructions for ranks to send / recv tomograms
such that W_rt can be computed when components of it exist on different ranks
Note: this method returns None,None unless rank==0 ; the results should be broadcast to all ranks
(this is because of the random.choice which is rank-dependent
"""
multis = self.on_multiple_ranks
send_to = {}
recv_from = {}
req_tag = 0
for rot_ind in multis:
ranks = set(self[rot_ind]['rank'])
tomo_manager = np.random.choice(list(ranks))
senders = ranks.difference({tomo_manager})
if tomo_manager not in recv_from:
recv_from[tomo_manager] = {'rot_inds': [], 'comms_info':[]}
recv_comms_info = []
for rank, i_data, P_dr in zip(
self[rot_ind]['rank'],
self[rot_ind]['i_data'],
self[rot_ind]['P_dr']):
if rank == tomo_manager:
continue
if np.isnan(P_dr):
continue
assert rank in senders
sender = rank
if sender not in send_to:
send_to[sender] = []
send_to[sender].append((tomo_manager, i_data, req_tag))
recv_comms_info.append((sender, P_dr, req_tag))
req_tag += 1
if recv_comms_info:
recv_from[tomo_manager]['rot_inds'].append(rot_ind)
recv_from[tomo_manager]['comms_info'].append(recv_comms_info)
return send_to, recv_from
def miller_array_from_integrate_output(h,I, symbol, ucell_p):
assert symbol is not None
assert ucell_p is not None
sym = crystal.symmetry(ucell_p, symbol)
cbo = sym.change_of_basis_op_to_primitive_setting()
sym_prim = sym.change_basis(cbo)
flex_h = flex.miller_index(h)
flex_intens = flex.double(I)
mset = miller.set(sym_prim, flex_h, True)
ma_prim = miller.array(mset, flex_intens).set_observation_type_xray_intensity()
ma = ma_prim.change_basis(cbo.inverse())
ma_asu = ma.map_to_asu()
info = list(zip(ma_asu.indices(), ma_asu.data()))
key = lambda x:x[0]
gb = groupby( sorted(info, key=key), key=key)
gb_data = {key: np.mean([i[1] for i in list(gr)]) for key, gr in gb}
new_h = list(gb_data.keys())
new_I = list(gb_data.values())
return new_h, new_I
def symmetrize(density, dens_dim, max_q, symbol="P43212",
reshape=True, how=0, friedel=True, uc=None):
"""
:param dens_dim: density dimension along one edge (cubic)
:param max_q: maximum q at corner of voxel
:param density: can be 1d or 3d (usually 1d)
:param symbol: space group lookup symbol
"""
# TODO: avoid recreating a LERPY instance if how==0 (e.g. use an already existing instance)
if how==0:
if lerpy is None:
raise ModuleNotFoundError("emc extension module failed to load")
uc, symbol = ucell_and_symbol(uc, symbol)
print("unit cell and symbol:", uc, symbol)
BO = get_BO_matrix(uc, symbol)
crys_sym = crystal.symmetry(uc, symbol)
cbo = crys_sym.change_of_basis_op_to_primitive_setting()
crys_sym = crys_sym.change_basis(cbo)
ucell = crys_sym.unit_cell()
#print("unit cell and symbol after change-of-basis:", ucell.parameters(), crys_sym.space_group().info().type().lookup_symbol())
Orth = sqr(ucell.orthogonalization_matrix())
#Orth = sqr(BO.T.ravel())
OrthInv = Orth.inverse()
O = crys_sym.space_group().all_ops()
print("Number of symmetry operations: %d" % len(O))
sym_rot_mats = []
sym_xyz = []
for o in O:
r = o.r()
R = sqr(r.as_double())
ORO = OrthInv*R*Orth
sym_rot_mats.append(np.reshape(ORO, (3,3)))
sym_xyz.append(r.as_xyz())
sym_rot_mats = np.array(sym_rot_mats)
dens_sh = dens_dim, dens_dim, dens_dim
xmin, xmax = get_xmin_xmax(max_q, dens_dim)
QBINS = np.linspace(-max_q, max_q, dens_dim+1)
QCENT = (QBINS[:-1] +QBINS[1:])*.5
qvecs = np.vstack(tuple(map(lambda x: x.ravel(), np.meshgrid(QCENT, QCENT, QCENT, indexing='ij') ))).T
# this equiv to for i in Qcent for j in Qcent for k in Qcent: [i,j,k]
if how==0:
L = lerpy()
L.dens_dim=dens_dim
L.max_q=max_q
qvecs = qvecs.astype(L.array_type)
num_data_pix = maxNumQ = dens_dim**3
maxRotInds = len(sym_rot_mats)
corners, deltas = corners_and_deltas(dens_sh, xmin, xmax)
dev_id = 0
L.allocate_lerpy(
dev_id, sym_rot_mats.astype(L.array_type).ravel(),
int(maxNumQ),
tuple(corners), tuple(deltas), qvecs.ravel(),
maxRotInds, int(num_data_pix))
L.toggle_insert()
for i in range(maxRotInds):
L.trilinear_insertion(i, density.ravel())
d = L.densities()
w = L.wts()
d = errdiv(d,w)
if reshape:
d = d.reshape(dens_sh)
L.free()
elif how==1:
A = np.zeros(dens_sh)
B = np.zeros(dens_sh)
for rot in sym_rot_mats:
qcoords_rot = np.dot(rot.T, qvecs.T).T
is_inbounds = qs_inbounds(qcoords_rot, dens_sh, xmin, xmax)
trilinear_insertion(
A,B,
vectors=np.ascontiguousarray(qcoords_rot[is_inbounds]),
insert_vals=density.ravel().astype(np.float64)[is_inbounds],
x_min=xmin, x_max=xmax)
#d = errdiv(A,B)
d=A
else:
raise NotImplementedError("still working out the kinds of index-based symmetry")
d = np.zeros_like(density)
for ii, xyz in enumerate(sym_xyz):
xyz = xyz.split(',')
#a,b,c = xyz.split(',')
#s_put = [slice(None) for _ in range(3)]
swap=False
if 'y' in xyz[0]:
swap = True
invert_map = {'x':2, 'y':1, 'z':0}
invert = []
for v in xyz:
if v.startswith('-'):
invert.append(invert_map[v[1]])
#invert = [invert_map[i_ax] for i_ax in range(3) if xyz[i_ax].startswith('-')]
#for i,x in enumerate((a,b,c)):
# invert = False
# if x.startswith('-'):
# x = x[1]
# invert = True
# if invert:
# s_put[i] = slice(density.shape[0],None,-1)
# else:
# s_put[i] = slice(0, density.shape[0], 1)
print(ii, xyz, invert, swap)
print("")
d_term = density.copy()
if invert:
d_term = np.flip(d_term, axis=tuple(invert))
if swap:
d_term = d_term.swapaxes(2,1)
d+= d_term
#if swap:
# d = d.swapaxes(2,1)
#if invert:
# d = np.flip(d, axis=tuple(invert))
#d += density
#if invert:
# d = np.flip(d, axis=tuple(invert))
#if swap:
# d = d.swapaxes(2,1)
d /= len(sym_xyz)
if friedel:
d = 0.5*(d +np.flip(d))
return d
def errdiv(v1, v2, posinf=0, neginf=0):
"""
carefully divide v1 by v2. Note posinf,neginf set to 0 because:
https://stackoverflow.com/q/71667082/2077270
:param v1:
:param v2:
:param posinf:
:param neginf:
:return:
"""
with np.errstate(divide='ignore', invalid='ignore'):
v3 = np.nan_to_num(v1 / v2, posinf=posinf, neginf=neginf)
return v3
def qs_inbounds(qcoords, dens_sh, x_min, x_max):
corner,deltas = corners_and_deltas(dens_sh, x_min, x_max)
kji = np.floor((qcoords - corner) / deltas)
bad = np.logical_or(kji < 0, kji > dens_sh[0]-2)
inbounds = ~np.any(bad, axis=1)
return inbounds
def dials_find_spots(data_img, params, trusted_flags=None):
"""
:param data_img: 2-D numpy array image, or sub-image (region of interest, e.g. a shoebox)
:param params: instance of stills_process params.spotfinder, see method stills_process_params_from_file
:param trusted_flags: boolean array, same shape as data_img, True=good pixel, False is bad pixels
:return:
"""
if trusted_flags is None:
trusted_flags = np.ones(data_img.shape, bool)
thresh = SpotFinderFactory.configure_threshold(params)
flex_data = flex.double(np.ascontiguousarray(data_img))
flex_trusted_flags = flex.bool(np.ascontiguousarray(trusted_flags))
spotmask = thresh.compute_threshold(flex_data, flex_trusted_flags)
spotmask = spotmask.as_numpy_array()
lab, nlab = nd.label(spotmask)
npix_per_ref = nd.sum(spotmask, lab, index=list(range(1, nlab+1)))
minpix = 1
if isinstance(params.spotfinder.filter.min_spot_size, int):
minpix = params.spotfinder.filter.min_spot_size
maxpix = np.inf
if isinstance(params.spotfinder.filter.max_spot_size, int):
maxpix = params.spotfinder.filter.max_spot_size
bad_ref_labels = np.where( np.logical_or(npix_per_ref < minpix, npix_per_ref > maxpix))[0]
for i_lab in bad_ref_labels:
spotmask[lab==i_lab+1] = False
return spotmask
def refls_from_sims(panel_imgs, detector, beam, thresh=0, filter=None, panel_ids=None,
max_spot_size=1000, phil_file=None, **kwargs):
"""
This is for converting the centroids in the noiseless simtbx images
to a multi panel reflection table
:param panel_imgs: list or 3D array of detector panel simulations
:param detector: dxtbx detector model of a caspad
:param beam: dxtxb beam model
:param thresh: threshol intensity for labeling centroids
:param filter: optional filter to apply to images before
labeling threshold, typically one of scipy.ndimage's filters
:param pids: panel IDS , else assumes panel_imgs is same length as detector
:param kwargs: kwargs to pass along to the optional filter
:return: a reflection table of spot centroids
"""
if panel_ids is None:
panel_ids = np.arange(len(detector))
pxlst_labs = []
for i, pid in enumerate(panel_ids):
plab = PixelListLabeller()
img = panel_imgs[i]
if phil_file is not None:
params = stills_process_params_from_file(phil_file)
mask = dials_find_spots(img, params)
elif filter is not None:
mask = filter(img, **kwargs) > thresh
else:
mask = img > thresh
img_sz = detector[int(pid)].get_image_size() # for some reason the int cast is necessary in Py3
flex_img = flex.double(img)
flex_img.reshape(flex.grid(img_sz))
flex_mask = flex.bool(mask)
flex_mask.resize(flex.grid(img_sz))
pl = PixelList(0, flex.double(img), flex.bool(mask))
plab.add(pl)
pxlst_labs.append(plab)
El = db_utils.explist_from_numpyarrays(panel_imgs, detector, beam)
iset = El.imagesets()[0]
refls = pixel_list_to_reflection_table(
iset, pxlst_labs,