-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathloss_function.py
45 lines (35 loc) · 2.25 KB
/
loss_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
from torch import nn
from torch.distributions.kl import kl_divergence as kld
from torch.distributions.categorical import Categorical
from torch.distributions.normal import Normal
class Tacotron2Loss(nn.Module):
def __init__(self, hparams):
super(Tacotron2Loss, self).__init__()
self.ce_loss = nn.CrossEntropyLoss() #Maybe use (reduction='sum') ?
def forward(self, model_output, targets, re, batched_speakers):
mel_target, gate_target = targets[0], targets[1]
mel_target.requires_grad = False
gate_target.requires_grad = False
gate_target = gate_target.view(-1, 1)
mel_out, mel_out_postnet, gate_out, alignments, spkr_clsfir_logits = model_output
gate_out = gate_out.view(-1, 1)
mel_loss = nn.MSELoss()(mel_out, mel_target) + \
nn.MSELoss()(mel_out_postnet, mel_target)
gate_loss = nn.BCEWithLogitsLoss()(gate_out, gate_target)
means, stddevs = re.q_zo_given_X_at_x.mean, re.q_zo_given_X_at_x.stddev
kl_loss = kld(Normal(means[0], stddevs[0]), re.p_zo_given_yo.distrib_lis[batched_speakers[0]]).sum()
for i, speaker in enumerate(batched_speakers[1:], 1) :
kl_loss += kld(Normal(means[i], stddevs[i]), re.p_zo_given_yo.distrib_lis[speaker]).sum()
for i in range(re.p_zl_given_yl.n_disc) :
kl_loss += ( re.q_yl_given_X[i]*kld(re.q_zl_given_X_at_x, re.p_zl_given_yl.distrib_lis[i]).sum(dim=1) ).sum()
for i in range(re.q_yl_given_X.shape[1]) :
kl_loss += kld( Categorical(re.q_yl_given_X[:,i]), re.y_l)
kl_loss = kl_loss/batched_speakers.shape[0]
index_into_spkr_logits = batched_speakers.repeat_interleave(spkr_clsfir_logits.shape[1])
spkr_clsfir_logits = spkr_clsfir_logits.reshape(-1, spkr_clsfir_logits.shape[-1])
mask_index = spkr_clsfir_logits.abs().sum(dim=1)!=0
spkr_clsfir_logits = spkr_clsfir_logits[mask_index]
index_into_spkr_logits = index_into_spkr_logits[mask_index]
speaker_loss = self.ce_loss(spkr_clsfir_logits, index_into_spkr_logits)/batched_speakers.shape[0]
return (mel_loss + gate_loss) + 0.02*speaker_loss +kl_loss