-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcmask2polygons.py
65 lines (47 loc) · 2.47 KB
/
cmask2polygons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import cv2
import numpy as np
__all__ = ['get_polygons_per_class']
def _get_unique_colors(img_arr):
return np.unique(img_arr.reshape(-1, 3), axis=0)
def _get_cls_from_color_mask(color_mask, cls_color_map):
cls_color_map_rev = {str(color): cls_name for cls_name, color in cls_color_map.items()}
colors = _get_unique_colors(img_arr=color_mask)
classes = list()
for color in colors:
color = str(tuple(color)) # Convert color type to str for hashing
cls = cls_color_map_rev[color]
classes.append(cls)
return classes
def _get_bin_mask(color_mask, cls_name, cls_color_map):
color = cls_color_map[cls_name]
cls_pixels = np.all(color_mask==color, axis=-1)
height, width, _ = color_mask.shape
bin_mask = np.zeros([height, width])
bin_mask[cls_pixels] = 255
bin_mask[~cls_pixels] = 0
return bin_mask.astype(np.uint8)
def _get_polygons_from_bin_mask(bin_mask, min_area, epsilon_param, pt_type, add_closept):
contours, _ = cv2.findContours(bin_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_TC89_KCOS) # contours, hierarchy
contour_approxed_list = list()
for contour in contours:
if cv2.contourArea(contour) < min_area: continue
epsilon = epsilon_param * cv2.arcLength(curve=contour, closed=True)
contour_approxed = cv2.approxPolyDP(curve=contour, epsilon=epsilon, closed=True)
# Convert data type of contours for serializing (np.ndarray --> list, np.int64 --> pt_type)
contour_approxed_converted = list()
for xy in contour_approxed:
xy = list(map(pt_type, xy[0]))
contour_approxed_converted.append(xy)
# Append end point for representing closed
if add_closept:
contour_approxed_converted.append(contour_approxed_converted[0])
contour_approxed_list.append(contour_approxed_converted)
return contour_approxed_list
def get_polygons_per_class(color_mask, cls_color_map, min_area=100.0, epsilon_param=8e-4, pt_type=int, add_closept=False):
classes = _get_cls_from_color_mask(color_mask=color_mask, cls_color_map=cls_color_map)
polygons_per_class = dict()
for cls in classes:
bin_mask = _get_bin_mask(color_mask=color_mask, cls_name=cls, cls_color_map=cls_color_map)
polygons = _get_polygons_from_bin_mask(bin_mask=bin_mask, min_area=min_area, epsilon_param=epsilon_param, pt_type=pt_type, add_closept=add_closept)
polygons_per_class[cls] = polygons
return polygons_per_class