-
-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathtfvisualize.py
63 lines (47 loc) · 2.25 KB
/
tfvisualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# script to visualize trained model with tensorboard
#
# @author: Michael Egger <michael.egger@tsn.at>
#
# @example: python tfvisualize.py test.model
import argparse
import os
import gensim
import numpy as np
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
parser = argparse.ArgumentParser(description='Script for visualizing word vector models with tensorboard')
parser.add_argument('model', type=str, help='source file with trained model')
parser.add_argument('-s', '--samples', type=int, default=10000, help='number of samples to project')
parser.add_argument('-p', '--projector', type=str, default='projector', help='target projector path')
parser.add_argument('--prefix', type=str, default='default', help='model prefix for projector files')
args = parser.parse_args()
# create projector folder if it doesnt exist
if not os.path.exists(args.projector):
os.makedirs(args.projector)
# loading your gensim
model = gensim.models.KeyedVectors.load_word2vec_format(args.model, binary=True)
# project part of vocab with all dimensions
w2v_samples = np.zeros((args.samples, model.vector_size))
with open('{}/{}_metadata.tsv'.format(args.projector, args.prefix), 'w+') as file_metadata:
for i, word in enumerate(model.wv.index2word[:args.samples]):
w2v_samples[i] = model[word]
file_metadata.write(word + '\n')
# define the model without training
sess = tf.InteractiveSession()
with tf.device("/cpu:0"):
embedding = tf.Variable(w2v_samples, trainable=False, name='{}_embedding'.format(args.prefix))
tf.global_variables_initializer().run()
saver = tf.train.Saver()
writer = tf.summary.FileWriter(args.projector, sess.graph)
# adding into projector
config = projector.ProjectorConfig()
embed = config.embeddings.add()
embed.tensor_name = '{}_embedding'.format(args.prefix)
embed.metadata_path = './{}_metadata.tsv'.format(args.prefix)
# Specify the width and height of a single thumbnail.
projector.visualize_embeddings(writer, config)
saver.save(sess, '{}/{}_model.ckpt'.format(args.projector, args.prefix), global_step=args.samples)
print('Start tensorboard with: \'tensorboard --logdir=\"projector\"\'\n'
'and check http://localhost:6006/#embeddings to view your embedding')