forked from kkweon/UNet-in-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
295 lines (214 loc) · 7.94 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# pylint: disable=E1101,C0103,C0326,W1202
"""
Data Related Functions
"""
import argparse
import logging
import os
import shutil
import time
from collections import namedtuple
from multiprocessing.pool import Pool
# For Typing Annotation
from typing import List, Tuple
import cv2
import numpy as np
import pandas as pd
from .image import read_image, read_image_and_resize
logging.basicConfig(level=logging.INFO)
LOGGER = logging.getLogger(__name__)
Box = namedtuple("Box", ["left_top", "right_bot"])
def read_flags():
"""Returns global variables"""
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="resize image and adjusts coordinates")
parser.add_argument(
"--src_csv",
default="data/labels_crowdai.csv",
help="/path/to/labels.csv")
parser.add_argument(
"--data_dir",
default="object-detection-crowdai",
help="Directory where training datasets are located")
parser.add_argument(
"--save_dir",
default="data_resize",
help="path to the directory in which resize image will be saved")
parser.add_argument(
"--target_width", default=960, help="new target width (default: 960)")
parser.add_argument(
"--target_height", default=640, help="target height (default: 640)")
parser.add_argument(
"--target_csv",
default="labels_resized.csv",
help="target csv filename")
return parser.parse_args()
def get_boxes(df: pd.DataFrame) -> List[Box]:
"""Given relevant DATAFRAME return a list of BOX"""
boxes = []
for _, items in df.iterrows():
left_top = items["xmin"], items["ymin"]
right_bot = items["xmax"], items["ymax"]
boxes.append(Box(left_top, right_bot))
return boxes
def create_clean_dir(dirname: str) -> None:
"""Create an empty directory
Args:
dirname (str): An empty directory name to create
"""
if os.path.exists(dirname):
shutil.rmtree(dirname)
assert os.path.exists(dirname) is False
os.mkdir(dirname)
assert not os.listdir(dirname)
def adjust_bbox(bboxframe: pd.DataFrame,
src_size: Tuple[int, int],
dst_size: Tuple[int, int]) -> pd.DataFrame:
"""Returns a new dataframe with adjusted coordinates
W W_new
+----+ ----> +-+
| | H | | H_new
+----+ +-+
Args:
bboxframe (pd.DataFrame): Bounding box infor dataframe
src_size (Tuple[int, int]): Original image (width, height)
dst_size (Tuple[int, int]): New image (width, height)
Returns:
pd.DataFrame: Its coordinates are adjusted to a new size
"""
W, H = src_size
W_new, H_new = dst_size
bboxframe = bboxframe.copy()
bboxframe['xmin'] = (bboxframe['xmin'] * W_new / W).astype(np.int16)
bboxframe['xmax'] = (bboxframe['xmax'] * W_new / W).astype(np.int16)
bboxframe['ymin'] = (bboxframe['ymin'] * H_new / H).astype(np.int16)
bboxframe['ymax'] = (bboxframe['ymax'] * H_new / H).astype(np.int16)
return bboxframe
def get_relevant_frames(image_path: str,
dataframe: pd.DataFrame) -> pd.DataFrame:
"""Returns a dataframe that contains truck image
Args:
image_path (str): "path/to/image.jpg"
dataframe (pd.DataFrame): The base frame to be searched
Returns:
pd.DataFrame: A dataframe that contains input images
"""
cond = dataframe["Frame"] == image_path
return dataframe[cond].reset_index(drop=True)
def get_mask(image: np.ndarray, bbox_frame: pd.DataFrame) -> np.ndarray:
"""Returns a binary mask
Args:
image (3-D array): Numpy array of shape (H, W, C)
bbox_frame (pd.DataFrame): Dataframe related with the input image
It contains bounding box coordinates
Returns:
2-D array: Mask shape (H, W)
1 for bounding box area
0 for background
"""
H, W, _ = image.shape
mask = np.zeros((H, W))
for _, row in bbox_frame.iterrows():
W_beg, W_end = row['xmin'], row['xmax']
H_beg, H_end = row['ymin'], row['ymax']
mask[H_beg:H_end, W_beg:W_end] = 1
return mask
def create_mask(image_WH: Tuple[int, int],
image_path: str,
dataframe: pd.DataFrame) -> np.ndarray:
"""Returns a mask array
Object = 255
Else = 0
Args:
image_WH (Tuple[int, int]): Image size (width, height)
image_path (str): /path/to/image.jpg
dataframe (pd.DataFrame): DataFrame contains bbox information
Returns:
2-D array: Mask array
Examples:
>>> image_WH = (960, 640)
>>> image_path = "images/image000.jpg"
>>> mask = create_mask(image_WH, image_path, dataframe)
"""
W, H = image_WH
mask = np.zeros((H, W))
bbox_frame = get_relevant_frames(image_path, dataframe)
for _, row in bbox_frame.iterrows():
W_beg, W_end = row['xmin'], row['xmax']
H_beg, H_end = row['ymin'], row['ymax']
mask[H_beg:H_end, W_beg:W_end] = 255
return mask
def generate_mask_pipeline(image_WH: Tuple[int, int],
image_path: str,
dataframe: pd.DataFrame,
save_dir: str="mask") -> None:
"""Create a mask and save as JPG
Args:
image_WH (Tuple[int, int]): (width: int, height: int)
image_path (str): path/to/image.jpg
dataframe (pd.DataFrame): labels.csv
save_dir (str): Save directory
"""
filename = os.path.basename(image_path)
full_path = os.path.join(save_dir, filename)
mask = create_mask(image_WH, image_path, dataframe)
cv2.imwrite(full_path, mask)
def main(FLAGS):
"""Main Function
Notes:
1. Read image and resize to Target Width, Height
2. Resize bounding box coordinates accordingly
3. Create masks with the bounding box
background is 0 and vehicle is 255
"""
new_WH = (FLAGS.target_width, FLAGS.target_height)
data = pd.read_csv(FLAGS.src_csv)
# Only consider car and truck images
data = data[data["Label"].isin(["Car", "Truck"])].reset_index(drop=True)
# 123.jpg -> object-detection-crowdai/123.jpg
data["Frame"] = data["Frame"].map(
lambda x: os.path.join(FLAGS.data_dir, x))
# IF dir exists, clean it
create_clean_dir(FLAGS.save_dir)
LOGGER.info("Cleaned {} directory".format(FLAGS.save_dir))
LOGGER.info("Resizing begins")
start = time.time()
pool = Pool()
pool.starmap_async(read_image_and_resize,
[(image_path, new_WH, FLAGS.save_dir)
for image_path in data["Frame"].unique()])
pool.close()
pool.join()
end = time.time()
LOGGER.info("Time elapsed: {}".format(end - start))
LOGGER.info("Resizing ends")
LOGGER.info("Adjusting dataframe")
# Read any image file to get the WIDTH and HEIGHT
image_path = data["Frame"][0]
image = read_image(image_path)
H, W, _ = image.shape
src_size = (W, H)
labels = adjust_bbox(data, src_size, new_WH)
# object-.../123.jpg -> data_resize/123.jpg
labels["Frame"] = labels["Frame"].map(
lambda x: os.path.join(FLAGS.save_dir, os.path.basename(x)))
create_clean_dir("mask")
LOGGER.info("Cleaned {} directory".format("mask"))
LOGGER.info("Masking begin")
start = time.time()
pool = Pool()
tasks = [(new_WH, image_path, labels, "mask")
for image_path in labels["Frame"].unique()]
pool.starmap_async(generate_mask_pipeline, tasks)
pool.close()
pool.join()
end = time.time()
LOGGER.info("Masking ends. Time elapsed: {}".format(end - start))
labels["Mask"] = labels["Frame"].map(
lambda x: os.path.join("mask", os.path.basename(x)))
labels.to_csv(FLAGS.target_csv, index=False)
LOGGER.info("Adjustment saved to {}".format(FLAGS.target_csv))
if __name__ == '__main__':
flags = read_flags()
main(flags)