-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_experiments.py
30 lines (25 loc) · 1.46 KB
/
run_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from bmdal_reg.run_experiments import get_relu_configs, run_experiments, get_silu_configs
if __name__ == '__main__':
use_pool_for_normalization = True
relu_bs_configs = get_relu_configs().filter_names(
['NN_lcmd-tp_grad_rp-512', 'NN_kmeanspp-p_grad_rp-512_acs-rf-512', 'NN_fw-p_grad_rp-512_acs-rf-hyper-512',
'NN_maxdist-p_grad_rp-512_train',
'NN_maxdet-p_grad_rp-512_train',
'NN_maxdiag_grad_rp-512_acs-rf-512',
'NN_bait-f-p_grad_rp-512_train'])
# # ReLU experiments
run_experiments('relu', 20, get_relu_configs(),
use_pool_for_normalization=use_pool_for_normalization)
# SiLU experiments, without batch size experiments
run_experiments('silu', 20, get_silu_configs(),
use_pool_for_normalization=use_pool_for_normalization)
# # ReLU batch size experiments
run_experiments('relu', 20, relu_bs_configs,
batch_sizes_configs=[[2**(12-m)]*(2**m) for m in range(7) if m != 4],
task_descs=[f'{2**(12-m)}x{2**m}' for m in range(7) if m != 4],
use_pool_for_normalization=use_pool_for_normalization)
# for hyperparameter optimization
# run_experiments('relu_tuning', 2, get_relu_tuning_configs(),
# use_pool_for_normalization=use_pool_for_normalization)
# run_experiments('silu_tuning', 2, get_silu_tuning_configs(),
# use_pool_for_normalization=use_pool_for_normalization)