-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDNNClassifier.py
193 lines (152 loc) · 6.96 KB
/
DNNClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import numpy as np
import pandas as pd
import random as rn
import tensorflow as tf
import keras
from keras import models
from keras.layers import Dense
from keras import layers
from keras import optimizers
from keras import *
from keras.layers import Dropout
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, f1_score
import pickle, os
from datetime import datetime
import FeatureEngine
seed = 7
np.random.seed(seed)
rn.seed(10)
tf.random.set_seed(seed)
class DNN:
# init method or constructor
def __init__(self,test_size=0.02):
#test size of the test set
self.test_size=test_size
def create_model(self,num_inputs):
# model
model = models.Sequential()
model.add(layers.Dense(56, activation='relu', kernel_regularizer=regularizers.l2(0.0001),
input_shape=(num_inputs,))) # 110
model.add(Dropout(0.5)) #
model.add(layers.Dense(28, activation='relu', kernel_regularizer=regularizers.l2(0.0001))) # 55
model.add(Dropout(0.5)) # 0.025
# model.add(layers.Dense(50, activation='relu', kernel_regularizer=regularizers.l2(0.0001)))#22
# model.add(Dropout(0.05))#0.025
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
def load_data(self,file_name='DATA/data_file.csv'):
'''
df = pd.read_csv(file_name, header=None)
'''
feature_eng = FeatureEngine.Features(formula_file=file_name)
features = feature_eng.get_features(addAVG=True,addAAD=False,addMD=True,addCV=False)
df=pd.DataFrame(features)
#df = df.drop([9])
df = df.dropna()
imp = SimpleImputer(missing_values=np.nan, strategy='mean')
imp.fit(df.values.tolist())
data_list = imp.transform(df.values.tolist())
df = pd.DataFrame(data_list)
return df
def split_data(self,df):
df0 = df.loc[df[0] == 0]
df1 = df.loc[df[0] == 1]
row_list = []
for indx, row in df0.iterrows():
row_list.append(row)
for indx, row in df1.iterrows():
row_list.append(row)
df = pd.DataFrame(row_list)
data_X, data_y = df.iloc[:, 1:].values, df.iloc[:, 0].values
train_x, test_x, train_y, test_y = train_test_split(data_X, data_y, test_size=self.test_size, random_state=42)
return (train_x, test_x, train_y, test_y)
def normalize_data(self,data):
train_x, test_x, train_y, test_y =data
print(f'Train_x set shape: {train_x.shape}')
print(f'Train_y set shape: {train_y.shape}')
print(f'Test_x set shape: {test_x.shape}')
print(f'Test_y set shape: {test_y.shape}')
xx = abs(train_x)
maxm = xx.max(axis=0)
maxm[maxm == 0.0] = 1
train_x /= maxm
test_x /= maxm
return (train_x, test_x, train_y, test_y,maxm)
def run_ml(self,data):
print('---------- Training the Model ------------')
train_x, test_x, train_y, test_y, maxm = data
# model training
num_inputs=train_x.shape[1]
model = self.create_model(num_inputs)
validation_split = 0.1666
epochs = 500
batch_size = 1500
history = model.fit(train_x, train_y, validation_split=validation_split, epochs=epochs, batch_size=batch_size, verbose=0)
# cross Validation
print('*************************************************************************')
print('Cross Validation')
num_folds = 3
self.cross_validation(train_x, train_y, num_folds=num_folds, validation_split=validation_split, epochs=epochs, batch_size=batch_size)
# model evaluation
results = model.evaluate(test_x, test_y)
y_rbf_test = (model.predict(test_x) > 0.5).astype(int)
y_rbf_train = (model.predict(train_x) > 0.5).astype(int)
return (train_y, y_rbf_train, test_y, y_rbf_test, model)
def cross_validation(self,train_x, train_y, num_folds,epochs, batch_size, validation_split):
kfold = KFold(n_splits=num_folds, shuffle=True)
n = 1
scores_list = []
for train, valid in kfold.split(train_x, train_y):
# print(f'--------Validation {n}---------')
num_inputs = train_x.shape[1]
modelK = self.create_model(num_inputs)
history = modelK.fit(train_x[train], train_y[train], validation_split=validation_split, epochs=epochs,
batch_size=batch_size, verbose=0)
scores = modelK.evaluate(train_x[valid], train_y[valid], verbose=0)
print(f'Fold number {n}: {modelK.metrics_names[1]}={scores[1]}')
scores_list.append(scores[1])
n += 1
print(f'Mean {modelK.metrics_names[1]}: {np.average(scores_list)}+/-{np.std(scores_list)}')
def print_clf_report(self,results):
train_y, y_rbf_train, test_y, y_rbf_test, model =results
print(f'Confusion Matrix: {confusion_matrix(test_y, y_rbf_test)}')
print('The Classification Report')
print(classification_report(test_y, y_rbf_test))
def save(self,model,maxm):
dir='TRAINED'
now=datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
filename = f'{dir}/model-{now}'
if not os.path.exists(dir):
os.makedirs(dir)
# save the model to disk
model.save(f'{filename}.h5')
#save the normalizing parameters
df_maxm = pd.DataFrame(maxm)
df_maxm.to_csv(f'{dir}/maxm-{now}.csv', index=False, header=None)
def load_model(self,file_name):
# load the model from disk
loaded_model = models.load_model(file_name)
#load normalizing parameters
dir=os.path.dirname(file_name)
file_name0=file_name.split(sep='.h5')[0]
file_name0=file_name0.split(sep='-')[1]
df_maxm_load = pd.read_csv(f'{dir}/maxm-{file_name0}.csv', header=None)
maxm = np.array([x[0] for x in df_maxm_load.values.tolist()])
return loaded_model, maxm
def predict(self,formulas,model,maxm,pred_x):
pred_x /= maxm
y_rbf_pred =(model.predict(pred_x) > 0.5).astype(int)
y_rbf_pred=list(y_rbf_pred)
y_pred_label=['magnetic compound' if x==0 else 'nonmagnetic compound' for x in y_rbf_pred]
dir='RESULTS'
now = datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
if not os.path.exists(dir):
os.makedirs(dir)
results=zip(formulas,y_pred_label)
df_pred=pd.DataFrame(results)
df_pred.columns=['formual','class']
df_pred.to_csv(f'{dir}/dnn_results-{now}.csv',index=False)