-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqueue.py
106 lines (89 loc) · 3.08 KB
/
queue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
Basic M/M/1 Queue example via Simpy
Customer arrivals follow a poisson process
Service times follow exponential distribution
Covers:
- Resources
- Events
- MonitoredResource
"""
import random
import statistics
import simpy
RANDOM_SEED = 42
ARRIVAL_INTERVAL = 10.0 # lambda
SERVICE_TIME = 8.0 # mu
SIM_TIME = 100000
class MonitoredResource(simpy.Resource):
"""MonitoredResource: custom class for monitoring
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.data = []
self.total_service_time = 0.0
self.customer_times = []
self.wait_times = []
def request(self, *args, **kwargs):
self.data.append((self._env.now, len(self.queue)))
return super().request(*args, **kwargs)
def release(self, *args, **kwargs):
self.data.append((self._env.now, len(self.queue)))
return super().release(*args, **kwargs)
def arrival(env, interval, mu, resource):
"""Arrival process
Args:
env: Simpy environment
interval: interval of arrival (every x minutes)
mu: service time of resource
resource: Resource to use
"""
i = 0
while True:
customer = serve(env, "Customer%02d" % i, resource, mu)
env.process(customer)
arrival_time = random.expovariate(1.0 / interval)
yield env.timeout(arrival_time)
i += 1
def serve(env, name, resource, mu):
"""Customer arrives, is served, and leaves
Args:
env: Simpy environment
name: name of customer
resource: Resource to use
mu: service time of server
"""
arrive = env.now
print("%s arrives at %.2f" % (name, arrive))
with resource.request() as req:
yield req
wait = env.now - arrive
resource.wait_times.append(wait)
# Got resource
print("%s to resource, waited %.2f" % (name, wait))
service_time = random.expovariate(1.0 / mu)
resource.total_service_time += service_time
yield env.timeout(service_time)
resource.customer_times.append((env.now - arrive))
print('%s finished %.2f' % (name, env.now))
if __name__ == "__main__":
random.seed(RANDOM_SEED)
env = simpy.Environment()
res = MonitoredResource(env, capacity=1)
env.process(arrival(env, ARRIVAL_INTERVAL, SERVICE_TIME, res))
env.run(until=SIM_TIME)
print("\n")
AVG_WAIT = statistics.mean(res.wait_times)
print("Average wait time: %.2f" % (AVG_WAIT))
AVG_CUSTOMERS = sum(res.customer_times) / SIM_TIME
print("Average number of customers in system: %.2f" % (AVG_CUSTOMERS))
AVG_UTIL = res.total_service_time / SIM_TIME
print("Average utilization: %.2f" % (AVG_UTIL))
print("\n")
mu = (1 / SERVICE_TIME)
la = (1 / ARRIVAL_INTERVAL)
T_WAIT_TIME = 1 / (mu - la)
print("Theoretical wait time: %.2f" % (T_WAIT_TIME))
T_AVG_CUSTOMERS = (la**2) / ((mu * mu) - (mu * la))
print("Theoretical number of customers in system: %.2f" % (T_AVG_CUSTOMERS))
T_AVG_UTIL = la / mu
print("Theoretical utilization: %.2f" % (T_AVG_UTIL))