-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_ddf_survey.py
304 lines (245 loc) · 11.8 KB
/
make_ddf_survey.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import numpy as np
import matplotlib.pylab as plt
from rubin_sim.utils import calcSeason, ddf_locations
from rubin_sim.scheduler.utils import scheduled_observation
import os
import argparse
def ddf_slopes(ddf_name, raw_obs, night_season):
"""
Let's make custom slopes for each DDF
Parameters
----------
ddf_name : str
The DDF name to use
raw_obs : np.array
An array with values of 1 or zero. One element per night, value of 1 indicates the night
is during an active observing season.
night_season : np.array
An array of floats with the fractional season value (e.g., 0.5 would be half way through the first season)
"""
# OK, so 258 sequences is ~1% of the survey
# so a 25.8 sequences is a 0.1% season
# COSMOS is going to be 0.7% for 3 years, then 0.175 for the rest.
ss = 30 # standard season, was 45
if (ddf_name == 'ELAISS1') | (ddf_name == 'XMM_LSS') | (ddf_name == 'ECDFS'):
# Dict with keys for each season and values of the number of sequences
# to attempt.
season_vals = {0: 10, 1: ss, 2: ss, 3: ss, 4: ss, 5: ss,
6: ss, 7: ss, 8: ss, 9: ss, 10: 10}
round_season = np.floor(night_season)
cumulative_desired = np.zeros(raw_obs.size, dtype=float)
for season in np.unique(round_season):
in_season = np.where(round_season == season)
cumulative = np.cumsum(raw_obs[in_season])
cumulative = cumulative/cumulative.max() * season_vals[season]
cumulative_desired[in_season] = cumulative + np.max(cumulative_desired)
if ddf_name == 'EDFS_a':
season_vals = {0: 10, 1: ss, 2: ss, 3: ss, 4: ss, 5: ss,
6: ss, 7: ss, 8: ss, 9: ss, 10: 10}
round_season = np.floor(night_season)
cumulative_desired = np.zeros(raw_obs.size, dtype=float)
for season in np.unique(round_season):
in_season = np.where(round_season == season)
cumulative = np.cumsum(raw_obs[in_season])
cumulative = cumulative/cumulative.max() * season_vals[season]
cumulative_desired[in_season] = cumulative + np.max(cumulative_desired)
if ddf_name == 'COSMOS':
# looks like COSMOS has no in-season time for 10 at the current start mjd.
season_vals = {0: 10, 1: ss*5, 2: ss*5, 3: ss*2, 4: ss, 5: ss,
6: ss, 7: ss, 8: ss, 9: ss, 10: 10}
round_season = np.floor(night_season)
cumulative_desired = np.zeros(raw_obs.size, dtype=float)
for season in np.unique(round_season):
in_season = np.where(round_season == season)[0]
cumulative = np.cumsum(raw_obs[in_season])
if cumulative.max() > 0:
cumulative = cumulative/cumulative.max() * season_vals[season]
cumulative_desired[in_season] = cumulative + np.max(cumulative_desired)
return cumulative_desired
def match_cumulative(cumulative_desired, mask=None, no_duplicate=True):
"""Generate a schedule that tries to match the desired cumulative distribution given a mask
Parameters
----------
cumulative_desired : `np.array`, float
An array with the cumulative number of desired observations. Elements
are assumed to be evenly spaced.
mask : `np.array`, bool or int (None)
Set to zero for indices that cannot be scheduled
no_duplicate : bool (True)
If True, only 1 event can be scheduled per element
Returns
-------
schedule : `np.array`
The resulting schedule, with values marking number of events in that cell.
"""
rounded_desired = np.round(cumulative_desired)
sched = cumulative_desired*0
if mask is None:
mask = np.ones(sched.size)
valid = np.where(mask > 0)[0].tolist()
x = np.arange(sched.size)
drd = np.diff(rounded_desired)
step_points = np.where(drd > 0)[0] + 1
# would be nice to eliminate this loop, but it's not too bad.
# can't just use searchsorted on the whole array, because then there
# can be duplicate values, and array[[n,n]] = 1 means that extra match gets lost.
for indx in step_points:
left = np.searchsorted(x[valid], indx)
right = np.searchsorted(x[valid], indx, side='right')
d1 = indx - left
d2 = right - indx
if d1 < d2:
sched_at = left
else:
sched_at = right
# If we are off the end
if sched_at >= len(valid):
sched_at -= 1
sched[valid[sched_at]] += 1
if no_duplicate:
valid.pop(sched_at)
return sched
def optimize_ddf_times(ddf_name, ddf_RA, ddf_grid,
sun_limit=-18, airmass_limit=2.5, sky_limit=None,
g_depth_limit=23.5, sequence_limit=258, season_frac=0.1):
"""
Parameters
----------
ddf : `str`
The name of the DDF
ddf_grid : `np.array`
An array with info for the DDFs. Generated by the `generate_grid.py` script
season_frac : `float`
7.2 month observing season if season_frac = 0.2 (shaves 20% off each end of the full year)
"""
sun_limit = np.radians(sun_limit)
# XXX-- double check that I got this right
ack = ddf_grid['sun_alt'][0:-1] * ddf_grid['sun_alt'][1:]
night = np.zeros(ddf_grid.size, dtype=int)
night[np.where((ddf_grid['sun_alt'][1:] >= 0) & (ack < 0))] += 1
night = np.cumsum(night)
ngrid = ddf_grid['mjd'].size
# set a sun, airmass, sky masks
sun_mask = np.ones(ngrid, dtype=int)
sun_mask[np.where(ddf_grid['sun_alt'] >= sun_limit)] = 0
airmass_mask = np.ones(ngrid, dtype=int)
airmass_mask[np.where(ddf_grid['%s_airmass' % ddf_name] >= airmass_limit)] = 0
sky_mask = np.ones(ngrid, dtype=int)
if sky_limit is not None:
sky_mask[np.where(ddf_grid['%s_sky_g' % ddf_name] <= sky_limit)] = 0
sky_mask[np.where(np.isnan(ddf_grid['%s_sky_g' % ddf_name]) == True)] = 0
m5_mask = np.zeros(ngrid, dtype=bool)
m5_mask[np.isfinite(ddf_grid['%s_m5_g' % ddf_name])] = 1
if g_depth_limit is not None:
m5_mask[np.where(ddf_grid['%s_m5_g' % ddf_name] < g_depth_limit)] = 0
big_mask = sun_mask * airmass_mask * sky_mask * m5_mask
potential_nights = np.unique(night[np.where(big_mask > 0)])
# prevent a repeat sequence in a night
unights, indx = np.unique(night, return_index=True)
night_mjd = ddf_grid['mjd'][indx]
# The season of each night
night_season = calcSeason(ddf_RA, night_mjd)
raw_obs = np.ones(unights.size)
# take out the ones that are out of season
season_mod = night_season % 1
out_season = np.where((season_mod < season_frac) | (season_mod > (1.-season_frac)))
raw_obs[out_season] = 0
cumulative_desired = ddf_slopes(ddf_name, raw_obs, night_season)
night_mask = unights*0
night_mask[potential_nights] = 1
unight_sched = match_cumulative(cumulative_desired, mask=night_mask)
cumulative_sched = np.cumsum(unight_sched)
nights_to_use = unights[np.where(unight_sched == 1)]
# For each night, find the best time in the night.
# XXX--probably need to expand this part to resolve the times when multiple things get scheduled
mjds = []
for night_check in nights_to_use:
in_night = np.where((night == night_check) & (np.isfinite(ddf_grid['%s_m5_g' % ddf_name])))[0]
m5s = ddf_grid['%s_m5_g' % ddf_name][in_night]
# we could intorpolate this to get even better than 15 min resolution on when to observe
max_indx = np.where(m5s == m5s.max())[0].min()
mjds.append(ddf_grid['mjd'][in_night[max_indx]])
return mjds, night_mjd, cumulative_desired, cumulative_sched
def generate_ddf_scheduled_obs(data_file='ddf_grid.npz', flush_length=2, mjd_tol=15, expt=30.,
alt_min=25, alt_max=85, HA_min=21., HA_max=3.,
dist_tol=3., season_frac=0.1,
low_season_frac=0.4, low_season_rate=0.3,
nvis_master=[8, 10, 20, 20, 24, 18], filters='ugrizy',
nsnaps=[1, 2, 2, 2, 2, 2], sequence_limit=258):
flush_length = flush_length # days
mjd_tol = mjd_tol/60/24. # minutes to days
expt = expt
alt_min = np.radians(alt_min)
alt_max = np.radians(alt_max)
dist_tol = np.radians(dist_tol)
ddfs = ddf_locations()
ddf_data = np.load(data_file)
ddf_grid = ddf_data['ddf_grid'].copy()
all_scheduled_obs = []
for ddf_name in ['ELAISS1', 'XMM_LSS', 'ECDFS', 'COSMOS', 'EDFS_a']:
print('Optimizing %s' % ddf_name)
# 'ID', 'RA', 'dec', 'mjd', 'flush_by_mjd', 'exptime', 'filter', 'rotSkyPos', 'nexp',
# 'note'
# 'mjd_tol', 'dist_tol', 'alt_min', 'alt_max', 'HA_max', 'HA_min', 'observed'
mjds = optimize_ddf_times(ddf_name, ddfs[ddf_name][0], ddf_grid,
season_frac=season_frac,
sequence_limit=sequence_limit)[0]
for mjd in mjds:
for filtername, nvis, nexp in zip(filters, nvis_master, nsnaps):
if 'EDFS' in ddf_name:
obs = scheduled_observation(n=int(nvis/2))
obs['RA'] = np.radians(ddfs[ddf_name][0])
obs['dec'] = np.radians(ddfs[ddf_name][1])
obs['mjd'] = mjd
obs['flush_by_mjd'] = mjd + flush_length
obs['exptime'] = expt
obs['filter'] = filtername
obs['nexp'] = nexp
obs['note'] = 'DD:%s' % ddf_name
obs['mjd_tol'] = mjd_tol
obs['dist_tol'] = dist_tol
# Need to set something for HA limits
obs['HA_min'] = HA_min
obs['HA_max'] = HA_max
obs['alt_min'] = alt_min
obs['alt_max'] = alt_max
all_scheduled_obs.append(obs)
obs = scheduled_observation(n=int(nvis/2))
obs['RA'] = np.radians(ddfs[ddf_name.replace('_a', '_b')][0])
obs['dec'] = np.radians(ddfs[ddf_name.replace('_a', '_b')][1])
obs['mjd'] = mjd
obs['flush_by_mjd'] = mjd + flush_length
obs['exptime'] = expt
obs['filter'] = filtername
obs['nexp'] = nexp
obs['note'] = 'DD:%s' % ddf_name.replace('_a', '_b')
obs['mjd_tol'] = mjd_tol
obs['dist_tol'] = dist_tol
# Need to set something for HA limits
obs['HA_min'] = HA_min
obs['HA_max'] = HA_max
obs['alt_min'] = alt_min
obs['alt_max'] = alt_max
all_scheduled_obs.append(obs)
else:
obs = scheduled_observation(n=nvis)
obs['RA'] = np.radians(ddfs[ddf_name][0])
obs['dec'] = np.radians(ddfs[ddf_name][1])
obs['mjd'] = mjd
obs['flush_by_mjd'] = mjd + flush_length
obs['exptime'] = expt
obs['filter'] = filtername
obs['nexp'] = nexp
obs['note'] = 'DD:%s' % ddf_name
obs['mjd_tol'] = mjd_tol
obs['dist_tol'] = dist_tol
# Need to set something for HA limits
obs['HA_min'] = HA_min
obs['HA_max'] = HA_max
obs['alt_min'] = alt_min
obs['alt_max'] = alt_max
all_scheduled_obs.append(obs)
result = np.concatenate(all_scheduled_obs)
# Put in the scripted ID so it's easier to track which ones fail.
result['scripted_id'] = np.arange(result.size)
return result