-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtorch_fizz.cc
157 lines (142 loc) · 5.81 KB
/
torch_fizz.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/**
* PyTorch FizzBuzz (Native code)
*
* This file implements FizzBuzz with native PyTorch Tensor code.
* There are 2 implementations: one using regular torch::Tensor and the other using at::Tensor
* These are referred to as PyTorch Native and PyTorch ATNative implementations.
*
* Please see the README.md for details.
*/
#include <iostream>
#include <chrono>
#include <torch/torch.h>
#include <torch/csrc/jit/import.h>
using namespace std;
struct FizzBuzzTensorLoop : public torch::nn::Module {
torch::Tensor forward(torch::Tensor n) {
torch::Tensor fizz = torch::zeros(1);
torch::Tensor buzz = torch::zeros(1);
torch::Tensor fizzbuzz = torch::zeros(1);
for (torch::Tensor i = torch::zeros(1); (i < n).item().toBool(); i += 1) {
if ((i % 6 == 0).item().toBool()) {
fizzbuzz += 1;
} else if ((i % 3 == 0).item().toBool()) {
buzz += 1;
} else if ((i % 2 == 0).item().toBool()) {
fizz += 1;
}
}
return torch::stack({fizz, buzz, fizzbuzz});
}
};
struct FizzBuzzNativeLoop : public torch::nn::Module {
torch::Tensor forward(torch::Tensor n) {
int nmax = n.item().toInt();
torch::Tensor fizz = torch::zeros(1);
torch::Tensor buzz = torch::zeros(1);
torch::Tensor fizzbuzz = torch::zeros(1);
for (int i = 0; i < nmax; i += 1) {
if (i % 6 == 0) {
fizzbuzz += 1;
} else if (i % 3 == 0) {
buzz += 1;
} else if (i % 2 == 0) {
fizz += 1;
}
}
return torch::stack({fizz, buzz, fizzbuzz});
}
};
// C++ template to print vector container elements
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& v)
{
os << "[";
for (size_t i = 0; i < v.size(); ++i) {
os << v[i];
if (i != v.size() - 1)
os << ", ";
}
os << "]\n";
return os;
}
vector<int> fizzbuzz(int n) {
int fizz = 0, buzz = 0, fizzbuzz = 0;
for (int i = 0; i < n; ++i) {
if (i % 6 == 0) ++fizzbuzz;
else if (i % 3 == 0) ++buzz;
else if (i % 2 == 0) ++fizz;
}
return {fizz, buzz, fizzbuzz};
}
vector<int> fizzbuzz_volatile(volatile int n) {
volatile int fizz = 0, buzz = 0, fizzbuzz = 0;
for (int i = 0; i < n; ++i) {
if (i % 6 == 0) ++fizzbuzz;
else if (i % 3 == 0) ++buzz;
else if (i % 2 == 0) ++fizz;
}
return {fizz, buzz, fizzbuzz};
}
int main(int argc, char* argv[]) {
torch::NoGradGuard no_grad_guard;
cout << "Loading model.\n";
auto start = chrono::high_resolution_clock::now();
torch::jit::script::Module model = torch::jit::load("/tmp/fizzbuzz.pyt");
model.eval();
auto end = chrono::high_resolution_clock::now();
cout << "Time taken (PyTorch TorchScript Load) (ms): "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << '\n';
start = chrono::high_resolution_clock::now();
FizzBuzzNativeLoop cpp_model_native_loop;
cpp_model_native_loop.eval();
end = chrono::high_resolution_clock::now();
cout << "Time taken (PyTorch C++ Native Loop Model Build) (ms): "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << '\n';
start = chrono::high_resolution_clock::now();
FizzBuzzTensorLoop cpp_model_tensor_loop;
cpp_model_tensor_loop.eval();
end = chrono::high_resolution_clock::now();
cout << "Time taken (PyTorch C++ Tensor Loop Model Build) (ms): "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << '\n';
for (int i = 0; i < 3; ++i) {
cout << "\n\nRun: " << i << "\n";
cout << "=========================================\n";
auto n = torch::tensor(100000);
start = chrono::high_resolution_clock::now();
auto result = model.forward({n});
end = chrono::high_resolution_clock::now();
cout << "Result: [" << result << "]\n";
cout << "Time taken (PyTorch Loaded) (ms): "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << '\n';
start = chrono::high_resolution_clock::now();
result = cpp_model_tensor_loop.forward({n});
end = chrono::high_resolution_clock::now();
cout << "Result: [" << result << "]\n";
cout << "Time taken (PyTorch C++ Tensor Loop) (ms): "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << '\n';
start = chrono::high_resolution_clock::now();
result = cpp_model_native_loop.forward({n});
end = chrono::high_resolution_clock::now();
cout << "Result: [" << result << "]\n";
cout << "Time taken (PyTorch C++ Native Loop) (ms): "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << '\n';
start = chrono::high_resolution_clock::now();
auto vresult = fizzbuzz(100000);
end = chrono::high_resolution_clock::now();
cout << "Result: " << vresult;
cout << "Time taken (C++ Native Run) (ms): "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << '\n';
cout << "Time taken (C++ Native Run) (usec): "
<< chrono::duration_cast<std::chrono::microseconds>(end - start).count() << '\n';
start = chrono::high_resolution_clock::now();
vresult = fizzbuzz_volatile(100000);
end = chrono::high_resolution_clock::now();
cout << "Result: " << vresult;
cout << "Time taken (C++ Native Volatile) (ms): "
<< chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << '\n';
cout << "Time taken (C++ Native Volatile) (usec): "
<< chrono::duration_cast<std::chrono::microseconds>(end - start).count() << '\n';
}
return 0;
}