-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathabcranger.cpp
100 lines (86 loc) · 4.9 KB
/
abcranger.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#include "readstatobs.hpp"
#include "readreftable.hpp"
#include "cxxopts.hpp"
#include "EstimParam.hpp"
#include "ModelChoice.hpp"
int main(const int argc, const char* argv[]) {
size_t nref, chosenscen;
std::string headerfile,reftablefile,statobsfile;
try {
size_t nref;
cxxopts::Options options(argv[0], " - ABC Random Forest - Model choice or parameter estimation command line options");
options
.positional_help("[optional args]")
.show_positional_help();
options.add_options()
("h,header","Header file",cxxopts::value<std::string>()->default_value("headerRF.txt"))
("r,reftable","Reftable file",cxxopts::value<std::string>()->default_value("reftableRF.bin"))
("b,statobs","Statobs file",cxxopts::value<std::string>()->default_value("statobsRF.txt"))
("o,output","Prefix output (modelchoice_out or estimparam_out by default)",cxxopts::value<std::string>())
("n,nref","Number of samples, 0 means all",cxxopts::value<size_t>()->default_value("0"))
("m,minnodesize","Minimal node size. 0 means 1 for classification or 5 for regression",cxxopts::value<size_t>()->default_value("0"))
("t,ntree","Number of trees",cxxopts::value<size_t>()->default_value("500"))
("j,threads","Number of threads, 0 means all",cxxopts::value<size_t>()->default_value("0"))
("s,seed","Seed, generated by default",cxxopts::value<size_t>()->default_value("0"))
("c,noisecolumns","Number of noise columns",cxxopts::value<size_t>()->default_value("5"))
("nolinear","Disable LDA for model choice or PLS for parameter estimation")
("plsmaxvar","Percentage of maximum explained Y-variance for retaining pls axis",cxxopts::value<double>()->default_value("0.9"))
("chosenscen","Chosen scenario (mandatory for parameter estimation)", cxxopts::value<size_t>())
("noob","number of oob testing samples (mandatory for parameter estimation)",cxxopts::value<size_t>())
("allpost","calculate all posteriors per model not just the selected one")
("parameter","name of the parameter of interest (mandatory for parameter estimation)",cxxopts::value<std::string>())
("g,groups","Groups of models",cxxopts::value<std::string>())
("save","save forest in ranger format")
("help", "Print help")
;
auto opts = options.parse(argc,argv);
if (opts.count("help")) {
std::cout << options.help({"", "Group"}) << std::endl;
exit(0);
}
headerfile = opts["h"].as<std::string>();
reftablefile = opts["r"].as<std::string>();
statobsfile = opts["b"].as<std::string>();
nref = opts["n"].as<size_t>();
if (opts.count("chosenscen") != 0 ||
opts.count("parameter") != 0 ||
opts.count("noob") != 0)
{
std::cout << "> Parameter Estimation <" << std::endl;
if (opts.count("chosenscen") == 0 ||
opts.count("parameter") == 0 ||
opts.count("noob") == 0)
{
std::cout << "Error : please provide noob, parameter AND chosenscen arguments for parameter estimation." << std::endl;
exit(1);
}
chosenscen = static_cast<double>(opts["chosenscen"].as<size_t>());
auto myread = readreftable_scen(headerfile, reftablefile, chosenscen, nref);
auto origobs = readStatObs(statobsfile);
size_t nstat = myread.stats_names.size();
size_t num_samples = origobs.size() / nstat;
if (((origobs.size() % nstat) != 0) || (num_samples < 1)) {
std::cout << "wrong number of summary statistics in statobs file." << std::endl;
exit(1);
}
MatrixXd statobs = Map<MatrixXd>(origobs.data(),nstat,num_samples).transpose();
auto res = EstimParam_fun(myread, statobs, opts);
} else {
std::cout << "> Model Choice <" << std::endl;
auto myread = readreftable(headerfile, reftablefile, nref, false, opts.count("g") > 0 ? opts["g"].as<std::string>() : "");
auto origobs = readStatObs(statobsfile);
size_t nstat = myread.stats_names.size();
size_t num_samples = origobs.size() / nstat;
if (((origobs.size() % nstat) != 0) || (num_samples < 1)) {
std::cout << "wrong number of summary statistics in statobs file." << std::endl;
exit(1);
}
MatrixXd statobs = Map<MatrixXd>(origobs.data(),nstat,num_samples).transpose();
auto res = ModelChoice_fun(myread,statobs,opts);
}
} catch (const cxxopts::exceptions::exception& e)
{
std::cout << "error parsing options: " << e.what() << std::endl;
exit(1);
}
}