diff --git a/README.md b/README.md index 427c471..781ec35 100644 --- a/README.md +++ b/README.md @@ -1,61 +1,34 @@ -ABC random forests for model choice and parameters estimation -================ - -- Python -- Usage -- Model Choice -- Parameter - Estimation -- Various -- TODO -- References +# ABC random forests for model choice and parameters estimation + +- [Python](#python) +- [Usage](#usage) +- [Model Choice](#model-choice) +- [Parameter Estimation](#parameter-estimation) +- [Various](#various) +- [TODO](#todo) +- [References](#references) -[![PyPI](https://img.shields.io/pypi/v/pyabcranger.svg)](https://pypi.python.org/pypi/pyabcranger) -[![abcranger-build](https://github.com/diyabc/abcranger/workflows/abcranger-build/badge.svg)](https://github.com/diyabc/abcranger/actions?query=workflow%3Aabcranger-build+branch%3Amaster) +[![PyPI](https://img.shields.io/pypi/v/pyabcranger.svg)](https://pypi.python.org/pypi/pyabcranger) [![abcranger-build](https://github.com/diyabc/abcranger/workflows/abcranger-build/badge.svg)](https://github.com/diyabc/abcranger/actions?query=workflow%3Aabcranger-build+branch%3Amaster) Random forests methodologies for : - ABC model choice ([Pudlo et al. 2015](#ref-pudlo2015reliable)) -- ABC Bayesian parameter inference ([Raynal et al. - 2018](#ref-raynal2016abc)) +- ABC Bayesian parameter inference ([Raynal et al. 2018](#ref-raynal2016abc)) Libraries we use : -- [Ranger](https://github.com/imbs-hl/ranger) ([Wright and Ziegler - 2015](#ref-wright2015ranger)) : we use our own fork and have tuned - forests to do “online”[^1] computations (Growing trees AND making - predictions in the same pass, which removes the need of in-memory - storage of the whole forest)[^2]. -- [Eigen3](http://eigen.tuxfamily.org) ([Guennebaud, Jacob, et al. - 2010](#ref-eigenweb)) - -As a mention, we use our own implementation of LDA and PLS from -([Friedman, Hastie, and Tibshirani 2001, 1:81, -114](#ref-friedman2001elements)), PLS is optimized for univariate, see -[5.1](#sec-plsalgo). For linear algebra optimization purposes on large -reftables, the Linux version of binaries (standalone and python wheel) -are statically linked with [Intel’s Math Kernel -Library](https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html), -in order to leverage multicore and SIMD extensions on modern cpus. - -There is one set of binaries, which contains a Macos/Linux/Windows (x64 -only) binary for each platform. There are available within the -“[Releases](https://github.com/fradav/abcranger/releases)” tab, under -“Assets” section (unfold it to see the list). - -This is pure command line binary, and they are no prerequisites or -library dependencies in order to run it. Just download them and launch -them from your terminal software of choice. The usual caveats with -command line executable apply there : if you’re not proficient with the -command line interface of your platform, please learn some basics or ask -someone who might help you in those matters. - -The standalone is part of a specialized Population Genetics graphical -interface [DIYABC-RF](https://diyabc.github.io/), presented in MER -(Molecular Ecology Resources, Special Issue), ([Collin et al. -2021](#ref-Collin_2021)). +- [Ranger](https://github.com/imbs-hl/ranger) ([Wright and Ziegler 2015](#ref-wright2015ranger)) : we use our own fork and have tuned forests to do “online”[^1] computations (Growing trees AND making predictions in the same pass, which removes the need of in-memory storage of the whole forest)[^2]. +- [Eigen3](http://eigen.tuxfamily.org) ([Guennebaud, Jacob, et al. 2010](#ref-eigenweb)) + +As a mention, we use our own implementation of LDA and PLS from ([Friedman, Hastie, and Tibshirani 2001, vol. 181, 114](#ref-friedman2001elements)), PLS is optimized for univariate, see 5.1. For linear algebra optimization purposes on large reftables, the Linux version of binaries (standalone and python wheel) are statically linked with [Intel’s Math Kernel Library](https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html), in order to leverage multicore and SIMD extensions on modern cpus. + +There is one set of binaries, which contains a Macos/Linux/Windows (x64 only) binary for each platform. There are available within the “[Releases](https://github.com/fradav/abcranger/releases)” tab, under “Assets” section (unfold it to see the list). + +This is pure command line binary, and they are no prerequisites or library dependencies in order to run it. Just download them and launch them from your terminal software of choice. The usual caveats with command line executable apply there : if you’re not proficient with the command line interface of your platform, please learn some basics or ask someone who might help you in those matters. + +The standalone is part of a specialized Population Genetics graphical interface [DIYABC-RF](https://diyabc.github.io/), presented in MER (Molecular Ecology Resources, Special Issue), ([Collin et al. 2021](#ref-Collin_2021)). # Python @@ -67,14 +40,8 @@ pip install pyabcranger ## Notebooks examples -- On a [toy example with - ![MA(q)](https://latex.codecogs.com/png.image?%5Cbg_black&space;MA%28q%29 "MA(q)")](https://github.com/diyabc/abcranger/blob/master/notebooks/Toy%20example%20MA(q).ipynb), - using ([Lintusaari et al. 2018](#ref-JMLR:v19:17-374)) as - graph-powered engine. -- [Population genetics - demo](https://github.com/diyabc/abcranger/blob/master/notebooks/Population%20genetics%20Demo.ipynb), - data from ([Collin et al. 2021](#ref-Collin_2021)), available - [there](https://github.com/diyabc/diyabc/tree/master/diyabc-tests/MER/modelchoice/IndSeq) +- On a [toy example with $MA(q)$](https://github.com/diyabc/abcranger/blob/master/notebooks/Toy%20example%20MA(q).ipynb), using ([Lintusaari et al. 2018](#ref-JMLR:v19:17-374)) as graph-powered engine. +- [Population genetics demo](https://github.com/diyabc/abcranger/blob/master/notebooks/Population%20genetics%20Demo.ipynb), data from ([Collin et al. 2021](#ref-Collin_2021)), available [there](https://github.com/diyabc/diyabc/tree/master/diyabc-tests/MER/modelchoice/IndSeq) # Usage @@ -109,15 +76,16 @@ Usage: --help Print help ``` -- If you provide `--chosenscen`, `--parameter` and `--noob`, parameter - estimation mode is selected. +- If you provide `--chosenscen`, `--parameter` and `--noob`, parameter estimation mode is selected. - Otherwise by default it’s model choice mode. -- Linear additions are LDA for model choice and PLS for parameter - estimation, “–nolinear” options disables them in both case. +- Linear additions are LDA for model choice and PLS for parameter estimation, “–nolinear” options disables them in both case. # Model Choice -![Terminal model choice](./model_choice.gif) + ## Example @@ -129,79 +97,49 @@ Header, reftable and statobs files should be in the current directory. ## Groups -With the option `-g` (or `--groups`), you may “group” your models in -several groups splitted . For example if you have six models, labeled -from 1 to 6 \`-g “1,2,3;4,5,6” +With the option `-g` (or `--groups`), you may “group” your models in several groups splitted . For example if you have six models, labeled from 1 to 6 \`-g “1,2,3;4,5,6” ## Generated files Four files are created : -- `modelchoice_out.ooberror` : OOB Error rate vs number of trees (line - number is the number of trees) +- `modelchoice_out.ooberror` : OOB Error rate vs number of trees (line number is the number of trees) - `modelchoice_out.importance` : variables importance (sorted) -- `modelchoice_out.predictions` : votes, prediction and posterior error - rate +- `modelchoice_out.predictions` : votes, prediction and posterior error rate - `modelchoice_out.confusion` : OOB Confusion matrix of the classifier # Parameter Estimation -![Terminal estim param](./estim_param.gif) + ## Composite parameters -When specifying the parameter (option `--parameter`), one may specify -simple composite parameters as division, addition or multiplication of -two existing parameters. like `t/N` or `T1+T2`. +When specifying the parameter (option `--parameter`), one may specify simple composite parameters as division, addition or multiplication of two existing parameters. like `t/N` or `T1+T2`. ## A note about PLS heuristic -The `--plsmaxvar` option (defaulting at 0.90) fixes the number of -selected pls axes so that we get at least the specified percentage of -maximum explained variance of the output. The explained variance of the -output of the -![m](https://latex.codecogs.com/png.image?%5Cbg_black&space;m "m") first -axes is defined by the R-squared of the output: +The `--plsmaxvar` option (defaulting at 0.90) fixes the number of selected pls axes so that we get at least the specified percentage of maximum explained variance of the output. The explained variance of the output of the $m$ first axes is defined by the R-squared of the output: -![Yvar^m = \frac{\sum\_{i=1}^{N}{(\hat{y}^{m}\_{i}-\bar{y})^2}}{\sum\_{i=1}^{N}{(y\_{i}-\hat{y})^2}}](https://latex.codecogs.com/png.image?%5Cbg_black&space;Yvar%5Em%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7BN%7D%7B%28%5Chat%7By%7D%5E%7Bm%7D_%7Bi%7D-%5Cbar%7By%7D%29%5E2%7D%7D%7B%5Csum_%7Bi%3D1%7D%5E%7BN%7D%7B%28y_%7Bi%7D-%5Chat%7By%7D%29%5E2%7D%7D "Yvar^m = \frac{\sum_{i=1}^{N}{(\hat{y}^{m}_{i}-\bar{y})^2}}{\sum_{i=1}^{N}{(y_{i}-\hat{y})^2}}") +$$Yvar^m = \frac{\sum_{i=1}^{N}{(\hat{y}^{m}_{i}-\bar{y})^2}}{\sum_{i=1}^{N}{(y_{i}-\hat{y})^2}}$$ -where -![\hat{y}^{m}](https://latex.codecogs.com/png.image?%5Cbg_black&space;%5Chat%7By%7D%5E%7Bm%7D "\hat{y}^{m}") -is the output -![Y](https://latex.codecogs.com/png.image?%5Cbg_black&space;Y "Y") -scored by the pls for the -![m](https://latex.codecogs.com/png.image?%5Cbg_black&space;m "m")th -component. So, only the -![n\_{comp}](https://latex.codecogs.com/png.image?%5Cbg_black&space;n_%7Bcomp%7D "n_{comp}") -first axis are kept, and : +where $\hat{y}^{m}$ is the output $Y$ scored by the pls for the $m$th component. So, only the $n_{comp}$ first axis are kept, and : -![n\_{comp} = \underset{Yvar^m \leq{} 0.90\*Yvar^M, }{\operatorname{argmax}}](https://latex.codecogs.com/png.image?%5Cbg_black&space;n_%7Bcomp%7D%20%3D%20%5Cunderset%7BYvar%5Em%20%5Cleq%7B%7D%200.90%2AYvar%5EM%2C%20%7D%7B%5Coperatorname%7Bargmax%7D%7D "n_{comp} = \underset{Yvar^m \leq{} 0.90*Yvar^M, }{\operatorname{argmax}}") +$$n_{comp} = \underset{Yvar^m \leq{} 0.90*Yvar^M, }{\operatorname{argmax}}$$ -Note that if you specify 0 as `--plsmaxvar`, an “elbow” heuristic is -activiated where the following condition is tested for every computed -axis : +Note that if you specify 0 as `--plsmaxvar`, an “elbow” heuristic is activiated where the following condition is tested for every computed axis : -![\frac{Yvar^{k+1}+Yvar^{k}}{2} \geq 0.99(N-k)\left(Yvar^{k+1}-Yvar^ {k}\right)](https://latex.codecogs.com/png.image?%5Cbg_black&space;%5Cfrac%7BYvar%5E%7Bk%2B1%7D%2BYvar%5E%7Bk%7D%7D%7B2%7D%20%5Cgeq%200.99%28N-k%29%5Cleft%28Yvar%5E%7Bk%2B1%7D-Yvar%5E%20%7Bk%7D%5Cright%29 "\frac{Yvar^{k+1}+Yvar^{k}}{2} \geq 0.99(N-k)\left(Yvar^{k+1}-Yvar^ {k}\right)") +$$\frac{Yvar^{k+1}+Yvar^{k}}{2} \geq 0.99(N-k)\left(Yvar^{k+1}-Yvar^ {k}\right)$$ -If this condition is true for a windows of previous axes, sized to 10% -of the total possible axis, then we stop the PLS axis computation. +If this condition is true for a windows of previous axes, sized to 10% of the total possible axis, then we stop the PLS axis computation. -In practice, we find this -![n\_{heur}](https://latex.codecogs.com/png.image?%5Cbg_black&space;n_%7Bheur%7D "n_{heur}") -close enough to the previous -![n\_{comp}](https://latex.codecogs.com/png.image?%5Cbg_black&space;n_%7Bcomp%7D "n_{comp}") -for 99%, but it isn’t guaranteed. +In practice, we find this $n_{heur}$ close enough to the previous $n_{comp}$ for 99%, but it isn’t guaranteed. ## The signification of the `noob` parameter -The median global/local statistics and confidence intervals (global) -measures for parameter estimation need a number of OOB samples -(`--noob`) to be reliable (typlially 30% of the size of the dataset is -sufficient). Be aware than computing the whole set (i.e. assigning -`--noob` the same than for `--nref`) for weights predictions ([Raynal et -al. 2018](#ref-raynal2016abc)) could be very costly, memory and -cpu-wise, if your dataset is large in number of samples, so it could be -adviseable to compute them for only choose a subset of size `noob`. +The median global/local statistics and confidence intervals (global) measures for parameter estimation need a number of OOB samples (`--noob`) to be reliable (typlially 30% of the size of the dataset is sufficient). Be aware than computing the whole set (i.e. assigning `--noob` the same than for `--nref`) for weights predictions ([Raynal et al. 2018](#ref-raynal2016abc)) could be very costly, memory and cpu-wise, if your dataset is large in number of samples, so it could be adviseable to compute them for only choose a subset of size `noob`. ## Example (parameter estimation) @@ -215,79 +153,47 @@ Header, reftable and statobs files should be in the current directory. Five files (or seven if pls activated) are created : -- `estimparam_out.ooberror` : OOB MSE rate vs number of trees (line - number is the number of trees) +- `estimparam_out.ooberror` : OOB MSE rate vs number of trees (line number is the number of trees) - `estimparam_out.importance` : variables importance (sorted) -- `estimparam_out.predictions` : expectation, variance and 0.05, 0.5, - 0.95 quantile for prediction -- `estimparam_out.predweights` : csv of the value/weights pairs of the - prediction (for density plot) -- `estimparam_out.oobstats` : various statistics on oob (MSE, NMSE, NMAE - etc.) +- `estimparam_out.predictions` : expectation, variance and 0.05, 0.5, 0.95 quantile for prediction +- `estimparam_out.predweights` : csv of the value/weights pairs of the prediction (for density plot) +- `estimparam_out.oobstats` : various statistics on oob (MSE, NMSE, NMAE etc.) if pls enabled : - `estimparam_out.plsvar` : variance explained by number of components -- `estimparam_out.plsweights` : variable weight in the first component - (sorted by absolute value) +- `estimparam_out.plsweights` : variable weight in the first component (sorted by absolute value) # Various ## Partial Least Squares algorithm -1. ![X\_{0}=X ; y\_{0}=y](https://latex.codecogs.com/png.image?%5Cbg_black&space;X_%7B0%7D%3DX%20%3B%20y_%7B0%7D%3Dy "X_{0}=X ; y_{0}=y") -2. For - ![k=1,2,...,s](https://latex.codecogs.com/png.image?%5Cbg_black&space;k%3D1%2C2%2C...%2Cs "k=1,2,...,s") - : - 1. ![w\_{k}=\frac{X\_{k-1}^{T} y\_{k-1}}{y\_{k-1}^{T} y\_{k-1}}](https://latex.codecogs.com/png.image?%5Cbg_black&space;w_%7Bk%7D%3D%5Cfrac%7BX_%7Bk-1%7D%5E%7BT%7D%20y_%7Bk-1%7D%7D%7By_%7Bk-1%7D%5E%7BT%7D%20y_%7Bk-1%7D%7D "w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{y_{k-1}^{T} y_{k-1}}") - 2. Normalize - ![w_k](https://latex.codecogs.com/png.image?%5Cbg_black&space;w_k "w_k") - to - ![1](https://latex.codecogs.com/png.image?%5Cbg_black&space;1 "1") - 3. ![t\_{k}=\frac{X\_{k-1} w\_{k}}{w\_{k}^{T} w\_{k}}](https://latex.codecogs.com/png.image?%5Cbg_black&space;t_%7Bk%7D%3D%5Cfrac%7BX_%7Bk-1%7D%20w_%7Bk%7D%7D%7Bw_%7Bk%7D%5E%7BT%7D%20w_%7Bk%7D%7D "t_{k}=\frac{X_{k-1} w_{k}}{w_{k}^{T} w_{k}}") - 4. ![p\_{k}=\frac{X\_{k-1}^{T} t\_{k}}{t\_{k}^{T} t\_{k}}](https://latex.codecogs.com/png.image?%5Cbg_black&space;p_%7Bk%7D%3D%5Cfrac%7BX_%7Bk-1%7D%5E%7BT%7D%20t_%7Bk%7D%7D%7Bt_%7Bk%7D%5E%7BT%7D%20t_%7Bk%7D%7D "p_{k}=\frac{X_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}") - 5. ![X\_{k}=X\_{k-1}-t\_{k} p\_{k}^{T}](https://latex.codecogs.com/png.image?%5Cbg_black&space;X_%7Bk%7D%3DX_%7Bk-1%7D-t_%7Bk%7D%20p_%7Bk%7D%5E%7BT%7D "X_{k}=X_{k-1}-t_{k} p_{k}^{T}") - 6. ![q\_{k}=\frac{y\_{k-1}^{T} t\_{k}}{t\_{k}^{T} t\_{k}}](https://latex.codecogs.com/png.image?%5Cbg_black&space;q_%7Bk%7D%3D%5Cfrac%7By_%7Bk-1%7D%5E%7BT%7D%20t_%7Bk%7D%7D%7Bt_%7Bk%7D%5E%7BT%7D%20t_%7Bk%7D%7D "q_{k}=\frac{y_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}") - 7. ![u\_{k}=\frac{y\_{k-1}}{q\_{k}}](https://latex.codecogs.com/png.image?%5Cbg_black&space;u_%7Bk%7D%3D%5Cfrac%7By_%7Bk-1%7D%7D%7Bq_%7Bk%7D%7D "u_{k}=\frac{y_{k-1}}{q_{k}}") - 8. ![y\_{k}=y\_{k-1}-q\_{k} t\_{k}](https://latex.codecogs.com/png.image?%5Cbg_black&space;y_%7Bk%7D%3Dy_%7Bk-1%7D-q_%7Bk%7D%20t_%7Bk%7D "y_{k}=y_{k-1}-q_{k} t_{k}") - -**Comment** When there isn’t any missing data, stages -![2.1](https://latex.codecogs.com/png.image?%5Cbg_black&space;2.1 "2.1") -and -![2.2](https://latex.codecogs.com/png.image?%5Cbg_black&space;2.2 "2.2") -could be replaced by -![w\_{k}=\frac{X\_{k-1}^{T} y\_{k-1}}{\left\\\|X\_{k-1}^{T} y\_{k-1}\right\\\|}](https://latex.codecogs.com/png.image?%5Cbg_black&space;w_%7Bk%7D%3D%5Cfrac%7BX_%7Bk-1%7D%5E%7BT%7D%20y_%7Bk-1%7D%7D%7B%5Cleft%5C%7CX_%7Bk-1%7D%5E%7BT%7D%20y_%7Bk-1%7D%5Cright%5C%7C%7D "w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{\left\|X_{k-1}^{T} y_{k-1}\right\|}") -and -![2.3](https://latex.codecogs.com/png.image?%5Cbg_black&space;2.3 "2.3") -by -![t\_{k}=X\_{k-1}w\_{k}](https://latex.codecogs.com/png.image?%5Cbg_black&space;t_%7Bk%7D%3DX_%7Bk-1%7Dw_%7Bk%7D "t_{k}=X_{k-1}w_{k}") - -To get -![W](https://latex.codecogs.com/png.image?%5Cbg_black&space;W "W") so -that -![T=XW](https://latex.codecogs.com/png.image?%5Cbg_black&space;T%3DXW "T=XW") -we compute : - -![\mathbf{W}=\mathbf{W}^{\*}\left(\widetilde{\mathbf{P}} \mathbf{W}^{\*}\right)^{-1}](https://latex.codecogs.com/png.image?%5Cbg_black&space;%5Cmathbf%7BW%7D%3D%5Cmathbf%7BW%7D%5E%7B%2A%7D%5Cleft%28%5Cwidetilde%7B%5Cmathbf%7BP%7D%7D%20%5Cmathbf%7BW%7D%5E%7B%2A%7D%5Cright%29%5E%7B-1%7D "\mathbf{W}=\mathbf{W}^{*}\left(\widetilde{\mathbf{P}} \mathbf{W}^{*}\right)^{-1}") - -where -![\widetilde{\mathbf{P}}\_{K \times p}=\mathbf{t}\left\[p\_{1}, \ldots, p\_{K}\right\]](https://latex.codecogs.com/png.image?%5Cbg_black&space;%5Cwidetilde%7B%5Cmathbf%7BP%7D%7D_%7BK%20%5Ctimes%20p%7D%3D%5Cmathbf%7Bt%7D%5Cleft%5Bp_%7B1%7D%2C%20%5Cldots%2C%20p_%7BK%7D%5Cright%5D "\widetilde{\mathbf{P}}_{K \times p}=\mathbf{t}\left[p_{1}, \ldots, p_{K}\right]") -where -![\mathbf{W}^{\*}\_{p \times K} = \[w_1, \ldots, w_K\]](https://latex.codecogs.com/png.image?%5Cbg_black&space;%5Cmathbf%7BW%7D%5E%7B%2A%7D_%7Bp%20%5Ctimes%20K%7D%20%3D%20%5Bw_1%2C%20%5Cldots%2C%20w_K%5D "\mathbf{W}^{*}_{p \times K} = [w_1, \ldots, w_K]") +1. $X_{0}=X ; y_{0}=y$ +2. For $k=1,2,...,s$ : + 1. $w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{y_{k-1}^{T} y_{k-1}}$ + 2. Normalize $w_k$ to $1$ + 3. $t_{k}=\frac{X_{k-1} w_{k}}{w_{k}^{T} w_{k}}$ + 4. $p_{k}=\frac{X_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}$ + 5. $X_{k}=X_{k-1}-t_{k} p_{k}^{T}$ + 6. $q_{k}=\frac{y_{k-1}^{T} t_{k}}{t_{k}^{T} t_{k}}$ + 7. $u_{k}=\frac{y_{k-1}}{q_{k}}$ + 8. $y_{k}=y_{k-1}-q_{k} t_{k}$ + +**Comment** When there isn’t any missing data, stages $2.1$ and $2.2$ could be replaced by $w_{k}=\frac{X_{k-1}^{T} y_{k-1}}{\left\|X_{k-1}^{T} y_{k-1}\right\|}$ and $2.3$ by $t_{k}=X_{k-1}w_{k}$ + +To get $W$ so that $T=XW$ we compute : $$\mathbf{W}=\mathbf{W}^{*}\left(\widetilde{\mathbf{P}} \mathbf{W}^{*}\right)^{-1}$$ where $\widetilde{\mathbf{P}}_{K \times p}=\mathbf{t}\left[p_{1}, \ldots, p_{K}\right]$ where $\mathbf{W}^{*}_{p \times K} = [w_1, \ldots, w_K]$ # TODO ## Input/Output -- [x] Integrate hdf5 (or exdir? msgpack?) routines to save/load - reftables/observed stats with associated metadata +- [x] Integrate hdf5 (or exdir? msgpack?) routines to save/load reftables/observed stats with associated metadata - [ ] Provide R code to save/load the data - [x] Provide Python code to save/load the data ## C++ standalone -- [x] Merge the two methodologies in a single executable with the - (almost) the same options +- [x] Merge the two methodologies in a single executable with the (almost) the same options - [ ] (Optional) Possibly move to another options parser (CLI?) ## External interfaces @@ -311,114 +217,77 @@ where - methodologies parameters auto-tuning - auto-discovering the optimal number of trees by monitoring OOB error - auto-limiting number of threads by available memory -- Streamline the two methodologies (model choice and then parameters - estimation) -- Write our own tree/rf implementation with better storage efficiency - than ranger +- Streamline the two methodologies (model choice and then parameters estimation) +- Write our own tree/rf implementation with better storage efficiency than ranger - Make functional tests for the two methodologies -- Possible to use mondrian forests for online batches ? See - ([Lakshminarayanan, Roy, and Teh - 2014](#ref-lakshminarayanan2014mondrian)) +- Possible to use mondrian forests for online batches ? See ([Lakshminarayanan, Roy, and Teh 2014](#ref-lakshminarayanan2014mondrian)) # References -This have been the subject of a proceedings in [JOBIM -2020](https://jobim2020.sciencesconf.org/), -[PDF](https://hal.archives-ouvertes.fr/hal-02910067v2) and -[video](https://relaiswebcasting.mediasite.com/mediasite/Play/8ddb4e40fc88422481f1494cf6af2bb71d?catalog=e534823f0c954836bf85bfa80af2290921) -(in french), ([Collin et al. 2020](#ref-collin:hal-02910067)). +This have been the subject of a proceedings in [JOBIM 2020](https://jobim2020.sciencesconf.org/), [PDF](https://hal.archives-ouvertes.fr/hal-02910067v2) and [video](https://relaiswebcasting.mediasite.com/mediasite/Play/8ddb4e40fc88422481f1494cf6af2bb71d?catalog=e534823f0c954836bf85bfa80af2290921) (in french), ([Collin et al. 2020](#ref-collin:hal-02910067)). + +