forked from samtools/bcftools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconsensus.c
658 lines (599 loc) · 24.8 KB
/
consensus.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/* The MIT License
Copyright (c) 2014 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <getopt.h>
#include <unistd.h>
#include <ctype.h>
#include <htslib/vcf.h>
#include <htslib/kstring.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/kseq.h>
#include <htslib/regidx.h>
#include "bcftools.h"
#include "rbuf.h"
typedef struct
{
int num; // number of ungapped blocks in this chain
int *block_lengths; // length of the ungapped blocks in this chain
int *ref_gaps; // length of the gaps on the reference sequence between blocks
int *alt_gaps; // length of the gaps on the alternative sequence between blocks
int ori_pos;
int ref_last_block_ori; // start position on the reference sequence of the following ungapped block (0-based)
int alt_last_block_ori; // start position on the alternative sequence of the following ungapped block (0-based)
}
chain_t;
typedef struct
{
kstring_t fa_buf; // buffered reference sequence
int fa_ori_pos; // start position of the fa_buffer (wrt original sequence)
int fa_frz_pos; // protected position to avoid conflicting variants (last pos for SNPs/ins)
int fa_mod_off; // position difference of fa_frz_pos in the ori and modified sequence (ins positive)
int fa_end_pos; // region's end position in the original sequence
int fa_length; // region's length in the original sequence (in case end_pos not provided in the FASTA header)
int fa_case; // output upper case or lower case?
int fa_src_pos; // last genomic coordinate read from the input fasta (0-based)
rbuf_t vcf_rbuf;
bcf1_t **vcf_buf;
int nvcf_buf, rid;
regidx_t *mask;
int chain_id; // chain_id, to provide a unique ID to each chain in the chain output
chain_t *chain; // chain structure to store the sequence of ungapped blocks between the ref and alt sequences
// Note that the chain is re-initialised for each chromosome/seq_region
bcf_srs_t *files;
bcf_hdr_t *hdr;
FILE *fp_out;
FILE *fp_chain;
char **argv;
int argc, output_iupac, haplotype, isample;
char *fname, *ref_fname, *sample, *output_fname, *mask_fname, *chain_fname;
}
args_t;
static chain_t* init_chain(chain_t *chain, int ref_ori_pos)
{
// fprintf(stderr, "init_chain(*chain, ref_ori_pos=%d)\n", ref_ori_pos);
chain = (chain_t*) calloc(1,sizeof(chain_t));
chain->num = 0;
chain->block_lengths = NULL;
chain->ref_gaps = NULL;
chain->alt_gaps = NULL;
chain->ori_pos = ref_ori_pos;
chain->ref_last_block_ori = ref_ori_pos;
chain->alt_last_block_ori = ref_ori_pos;
return chain;
}
static void destroy_chain(args_t *args)
{
chain_t *chain = args->chain;
free(chain->ref_gaps);
free(chain->alt_gaps);
free(chain->block_lengths);
free(chain);
chain = NULL;
}
static void print_chain(args_t *args)
{
/*
Example chain format (see: https://genome.ucsc.edu/goldenPath/help/chain.html):
chain 1 500 + 480 500 1 501 + 480 501 1
12 3 1
1 0 3
484
chain line is:
- chain
- score (sum of the length of ungapped block in this case)
- ref_seqname (from the fasta header, parsed by htslib)
- ref_seqlength (from the fasta header)
- ref_strand (+ or -; always + for bcf-consensus)
- ref_start (as defined in the fasta header)
- ref_end (as defined in the fasta header)
- alt_seqname (same as ref_seqname as bcf-consensus only considers SNPs and indels)
- alt_seqlength (adjusted to match the length of the alt sequence)
- alt_strand (+ or -; always + for bcf-consensus)
- alt_start (same as ref_start, as no edits are recorded/applied before that position)
- alt_end (adjusted to match the length of the alt sequence)
- chain_num (just an auto-increment id)
the other (sorted) lines are:
- length of the ungapped alignment block
- gap on the ref sequence between this and the next block (all but the last line)
- gap on the alt sequence between this and the next block (all but the last line)
*/
chain_t *chain = args->chain;
int n = chain->num;
int ref_end_pos = args->fa_length + chain->ori_pos;
int last_block_size = ref_end_pos - chain->ref_last_block_ori;
int alt_end_pos = chain->alt_last_block_ori + last_block_size;
int score = 0;
for (n=0; n<chain->num; n++) {
score += chain->block_lengths[n];
}
score += last_block_size;
fprintf(args->fp_chain, "chain %d %s %d + %d %d %s %d + %d %d %d\n", score, bcf_hdr_id2name(args->hdr,args->rid), ref_end_pos, chain->ori_pos, ref_end_pos, bcf_hdr_id2name(args->hdr,args->rid), alt_end_pos, chain->ori_pos, alt_end_pos, ++args->chain_id);
for (n=0; n<chain->num; n++) {
fprintf(args->fp_chain, "%d %d %d\n", chain->block_lengths[n], chain->ref_gaps[n], chain->alt_gaps[n]);
}
fprintf(args->fp_chain, "%d\n\n", last_block_size);
}
static void push_chain_gap(chain_t *chain, int ref_start, int ref_len, int alt_start, int alt_len)
{
// fprintf(stderr, "push_chain_gap(*chain, ref_start=%d, ref_len=%d, alt_start=%d, alt_len=%d)\n", ref_start, ref_len, alt_start, alt_len);
int num = chain->num;
if (ref_start <= chain->ref_last_block_ori) {
// In case this variant is back-to-back with the previous one
chain->ref_last_block_ori = ref_start + ref_len;
chain->alt_last_block_ori = alt_start + alt_len;
chain->ref_gaps[num-1] += ref_len;
chain->alt_gaps[num-1] += alt_len;
} else {
// Extend the ungapped blocks, store the gap length
chain->block_lengths = (int*) realloc(chain->block_lengths, (num + 1) * sizeof(int));
chain->ref_gaps = (int*) realloc(chain->ref_gaps, (num + 1) * sizeof(int));
chain->alt_gaps = (int*) realloc(chain->alt_gaps, (num + 1) * sizeof(int));
chain->block_lengths[num] = ref_start - chain->ref_last_block_ori;
chain->ref_gaps[num] = ref_len;
chain->alt_gaps[num] = alt_len;
// Update the start positions of the next block
chain->ref_last_block_ori = ref_start + ref_len;
chain->alt_last_block_ori = alt_start + alt_len;
// Increment the number of ungapped blocks
chain->num++;
}
}
static void init_data(args_t *args)
{
args->files = bcf_sr_init();
args->files->require_index = 1;
if ( !bcf_sr_add_reader(args->files,args->fname) ) error("Failed to open %s: %s\n", args->fname, bcf_sr_strerror(args->files->errnum));
args->hdr = args->files->readers[0].header;
args->isample = -1;
if ( args->sample )
{
args->isample = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,args->sample);
if ( args->isample<0 ) error("No such sample: %s\n", args->sample);
}
if ( args->haplotype && args->isample<0 )
{
if ( bcf_hdr_nsamples(args->hdr) > 1 ) error("The --sample option is expected with --haplotype\n");
args->isample = 0;
}
if ( args->mask_fname )
{
args->mask = regidx_init(args->mask_fname,NULL,NULL,0,NULL);
if ( !args->mask ) error("Failed to initialize mask regions\n");
}
// In case we want to store the chains
if ( args->chain_fname )
{
args->fp_chain = fopen(args->chain_fname,"w");
if ( ! args->fp_chain ) error("Failed to create %s: %s\n", args->chain_fname, strerror(errno));
args->chain_id = 0;
}
rbuf_init(&args->vcf_rbuf, 100);
args->vcf_buf = (bcf1_t**) calloc(args->vcf_rbuf.m, sizeof(bcf1_t*));
if ( args->output_fname ) {
args->fp_out = fopen(args->output_fname,"w");
if ( ! args->fp_out ) error("Failed to create %s: %s\n", args->output_fname, strerror(errno));
}
else args->fp_out = stdout;
}
static void destroy_data(args_t *args)
{
bcf_sr_destroy(args->files);
int i;
for (i=0; i<args->vcf_rbuf.m; i++)
if ( args->vcf_buf[i] ) bcf_destroy1(args->vcf_buf[i]);
free(args->vcf_buf);
free(args->fa_buf.s);
if ( args->mask ) regidx_destroy(args->mask);
if ( args->chain_fname )
if ( fclose(args->fp_chain) ) error("Close failed: %s\n", args->chain_fname);
if ( fclose(args->fp_out) ) error("Close failed: %s\n", args->output_fname);
}
static void init_region(args_t *args, char *line)
{
char *ss, *se = line;
while ( *se && !isspace(*se) && *se!=':' ) se++;
int from = 0, to = 0;
char tmp, *tmp_ptr = NULL;
if ( *se )
{
tmp = *se; *se = 0; tmp_ptr = se;
ss = ++se;
from = strtol(ss,&se,10);
if ( ss==se || !*se || *se!='-' ) from = 0;
else
{
from--;
ss = ++se;
to = strtol(ss,&se,10);
if ( ss==se || (*se && !isspace(*se)) ) { from = 0; to = 0; }
else to--;
}
}
args->rid = bcf_hdr_name2id(args->hdr,line);
if ( args->rid<0 ) fprintf(stderr,"Warning: Sequence \"%s\" not in %s\n", line,args->fname);
args->fa_buf.l = 0;
args->fa_length = 0;
args->fa_end_pos = to;
args->fa_ori_pos = from;
args->fa_src_pos = from;
args->fa_mod_off = 0;
args->fa_frz_pos = -1;
args->fa_case = -1;
args->vcf_rbuf.n = 0;
bcf_sr_seek(args->files,line,args->fa_ori_pos);
if ( tmp_ptr ) *tmp_ptr = tmp;
fprintf(args->fp_out,">%s\n",line);
if (args->chain_fname )
{
args->chain = init_chain(args->chain, args->fa_ori_pos);
} else {
args->chain = NULL;
}
}
static bcf1_t **next_vcf_line(args_t *args)
{
if ( args->vcf_rbuf.n )
{
int i = rbuf_shift(&args->vcf_rbuf);
return &args->vcf_buf[i];
}
else if ( bcf_sr_next_line(args->files) )
return &args->files->readers[0].buffer[0];
return NULL;
}
static void unread_vcf_line(args_t *args, bcf1_t **rec_ptr)
{
bcf1_t *rec = *rec_ptr;
if ( args->vcf_rbuf.n >= args->vcf_rbuf.m )
error("FIXME: too many overlapping records near %s:%d\n", bcf_seqname(args->hdr,rec),rec->pos+1);
// Insert the new record in the buffer. The line would be overwritten in
// the next bcf_sr_next_line call, therefore we need to swap it with an
// unused one
int i = rbuf_append(&args->vcf_rbuf);
if ( !args->vcf_buf[i] ) args->vcf_buf[i] = bcf_init1();
bcf1_t *tmp = rec; *rec_ptr = args->vcf_buf[i]; args->vcf_buf[i] = tmp;
}
static void flush_fa_buffer(args_t *args, int len)
{
if ( !args->fa_buf.l ) return;
int nwr = 0;
while ( nwr + 60 <= args->fa_buf.l )
{
if ( fwrite(args->fa_buf.s+nwr,1,60,args->fp_out) != 60 ) error("Could not write: %s\n", args->output_fname);
if ( fwrite("\n",1,1,args->fp_out) != 1 ) error("Could not write: %s\n", args->output_fname);
nwr += 60;
}
if ( nwr )
args->fa_ori_pos += nwr;
if ( len )
{
// not finished on this chr yet and the buffer cannot be emptied completely
if ( nwr && nwr < args->fa_buf.l )
memmove(args->fa_buf.s,args->fa_buf.s+nwr,args->fa_buf.l-nwr);
args->fa_buf.l -= nwr;
return;
}
// empty the whole buffer
if ( nwr == args->fa_buf.l ) { args->fa_buf.l = 0; return; }
if ( fwrite(args->fa_buf.s+nwr,1,args->fa_buf.l - nwr,args->fp_out) != args->fa_buf.l - nwr ) error("Could not write: %s\n", args->output_fname);
if ( fwrite("\n",1,1,args->fp_out) != 1 ) error("Could not write: %s\n", args->output_fname);
args->fa_ori_pos += args->fa_buf.l - nwr - args->fa_mod_off;
args->fa_mod_off = 0;
args->fa_buf.l = 0;
}
static void apply_variant(args_t *args, bcf1_t *rec)
{
if ( rec->n_allele==1 ) return;
if ( rec->pos <= args->fa_frz_pos )
{
fprintf(stderr,"The site %s:%d overlaps with another variant, skipping...\n", bcf_seqname(args->hdr,rec),rec->pos+1);
return;
}
if ( args->mask )
{
char *chr = (char*)bcf_hdr_id2name(args->hdr,args->rid);
int start = rec->pos;
int end = rec->pos + rec->rlen - 1;
if ( regidx_overlap(args->mask, chr,start,end,NULL) ) return;
}
int i, ialt = 1;
if ( args->isample >= 0 )
{
bcf_fmt_t *fmt = bcf_get_fmt(args->hdr, rec, "GT");
if ( !fmt ) return;
if ( args->haplotype )
{
if ( args->haplotype > fmt->n ) error("Can't apply %d-th haplotype at %s:%d\n", args->haplotype,bcf_seqname(args->hdr,rec),rec->pos+1);
uint8_t *ignore, *ptr = fmt->p + fmt->size*args->isample + args->haplotype - 1;
ialt = bcf_dec_int1(ptr, fmt->type, &ignore);
if ( bcf_gt_is_missing(ialt) || ialt==bcf_int32_vector_end ) return;
ialt = bcf_gt_allele(ialt);
}
else if ( args->output_iupac )
{
uint8_t *ignore, *ptr = fmt->p + fmt->size*args->isample;
ialt = bcf_dec_int1(ptr, fmt->type, &ignore);
if ( bcf_gt_is_missing(ialt) || ialt==bcf_int32_vector_end ) return;
ialt = bcf_gt_allele(ialt);
int jalt;
if ( fmt->n>1 )
{
ptr = fmt->p + fmt->size*args->isample + 1;
jalt = bcf_dec_int1(ptr, fmt->type, &ignore);
if ( bcf_gt_is_missing(jalt) || jalt==bcf_int32_vector_end ) jalt = ialt;
else jalt = bcf_gt_allele(jalt);
}
else jalt = ialt;
if ( rec->n_allele <= ialt || rec->n_allele <= jalt ) error("Broken VCF, too few alts at %s:%d\n", bcf_seqname(args->hdr,rec),rec->pos+1);
if ( ialt!=jalt && !rec->d.allele[ialt][1] && !rec->d.allele[jalt][1] ) // is this a het snp?
{
char ial = rec->d.allele[ialt][0];
char jal = rec->d.allele[jalt][0];
rec->d.allele[ialt][0] = gt2iupac(ial,jal);
}
}
else
{
for (i=0; i<fmt->n; i++)
{
uint8_t *ignore, *ptr = fmt->p + fmt->size*args->isample + i;
ialt = bcf_dec_int1(ptr, fmt->type, &ignore);
if ( bcf_gt_is_missing(ialt) || ialt==bcf_int32_vector_end ) return;
ialt = bcf_gt_allele(ialt);
if ( ialt ) break;
}
}
if ( !ialt ) return; // ref allele
if ( rec->n_allele <= ialt ) error("Broken VCF, too few alts at %s:%d\n", bcf_seqname(args->hdr,rec),rec->pos+1);
}
else if ( args->output_iupac && !rec->d.allele[0][1] && !rec->d.allele[1][1] )
{
char ial = rec->d.allele[0][0];
char jal = rec->d.allele[1][0];
rec->d.allele[1][0] = gt2iupac(ial,jal);
}
int idx = rec->pos - args->fa_ori_pos + args->fa_mod_off;
if ( idx<0 || idx>=args->fa_buf.l )
error("FIXME: %s:%d .. idx=%d, ori_pos=%d, len=%d, off=%d\n",bcf_seqname(args->hdr,rec),rec->pos+1,idx,args->fa_ori_pos,args->fa_buf.l,args->fa_mod_off);
// sanity check the reference base
int len_diff = 0, alen = 0;
if ( rec->d.allele[ialt][0]=='<' )
{
if ( strcasecmp(rec->d.allele[ialt], "<DEL>") )
error("Symbolic alleles other than <DEL> are currently not supported: %s at %s:%d\n",rec->d.allele[ialt],bcf_seqname(args->hdr,rec),rec->pos+1);
assert( rec->d.allele[0][1]==0 ); // todo: for now expecting strlen(REF) = 1
len_diff = 1-rec->rlen;
rec->d.allele[ialt] = rec->d.allele[0]; // according to VCF spec, REF must precede the event
alen = strlen(rec->d.allele[ialt]);
}
else if ( strncasecmp(rec->d.allele[0],args->fa_buf.s+idx,rec->rlen) )
{
// fprintf(stderr,"%d .. [%s], idx=%d ori=%d off=%d\n",args->fa_ori_pos,args->fa_buf.s,idx,args->fa_ori_pos,args->fa_mod_off);
char tmp = 0;
if ( args->fa_buf.l - idx > rec->rlen )
{
tmp = args->fa_buf.s[idx+rec->rlen];
args->fa_buf.s[idx+rec->rlen] = 0;
}
error(
"The fasta sequence does not match the REF allele at %s:%d:\n"
" .vcf: [%s]\n"
" .vcf: [%s] <- (ALT)\n"
" .fa: [%s]%c%s\n",
bcf_seqname(args->hdr,rec),rec->pos+1, rec->d.allele[0], rec->d.allele[ialt], args->fa_buf.s+idx,
tmp?tmp:' ',tmp?args->fa_buf.s+idx+rec->rlen+1:""
);
}
else
{
alen = strlen(rec->d.allele[ialt]);
len_diff = alen - rec->rlen;
}
if ( args->fa_case )
for (i=0; i<alen; i++) rec->d.allele[ialt][i] = toupper(rec->d.allele[ialt][i]);
else
for (i=0; i<alen; i++) rec->d.allele[ialt][i] = tolower(rec->d.allele[ialt][i]);
if ( len_diff <= 0 )
{
// deletion or same size event
for (i=0; i<alen; i++)
args->fa_buf.s[idx+i] = rec->d.allele[ialt][i];
if ( len_diff )
memmove(args->fa_buf.s+idx+alen,args->fa_buf.s+idx+rec->rlen,args->fa_buf.l-idx-rec->rlen);
}
else
{
// insertion
ks_resize(&args->fa_buf, args->fa_buf.l + len_diff);
memmove(args->fa_buf.s + idx + rec->rlen + len_diff, args->fa_buf.s + idx + rec->rlen, args->fa_buf.l - idx - rec->rlen);
for (i=0; i<alen; i++)
args->fa_buf.s[idx+i] = rec->d.allele[ialt][i];
}
if (args->chain && len_diff != 0)
{
// If first nucleotide of both REF and ALT are the same... (indels typically include the nucleotide before the variant)
if ( strncasecmp(rec->d.allele[0],rec->d.allele[ialt],1) == 0)
{
// ...extend the block by 1 bp: start is 1 bp further and alleles are 1 bp shorter
push_chain_gap(args->chain, rec->pos + 1, rec->rlen - 1, rec->pos + 1 + args->fa_mod_off, alen - 1);
}
else
{
// otherwise, just the coordinates of the variant as given
push_chain_gap(args->chain, rec->pos, rec->rlen, rec->pos + args->fa_mod_off, alen);
}
}
args->fa_buf.l += len_diff;
args->fa_mod_off += len_diff;
args->fa_frz_pos = rec->pos + rec->rlen - 1;
}
static void mask_region(args_t *args, char *seq, int len)
{
char *chr = (char*)bcf_hdr_id2name(args->hdr,args->rid);
int start = args->fa_src_pos - len;
int end = args->fa_src_pos;
regitr_t itr;
if ( !regidx_overlap(args->mask, chr,start,end, &itr) ) return;
int idx_start, idx_end, i;
while ( REGITR_OVERLAP(itr,start,end) )
{
idx_start = REGITR_START(itr) - start;
idx_end = REGITR_END(itr) - start;
if ( idx_start < 0 ) idx_start = 0;
if ( idx_end >= len ) idx_end = len - 1;
for (i=idx_start; i<=idx_end; i++) seq[i] = 'N';
itr.i++;
}
}
static void consensus(args_t *args)
{
htsFile *fasta = hts_open(args->ref_fname, "rb");
if ( !fasta ) error("Error reading %s\n", args->ref_fname);
kstring_t str = {0,0,0};
while ( hts_getline(fasta, KS_SEP_LINE, &str) > 0 )
{
if ( str.s[0]=='>' )
{
// new sequence encountered, apply all chached variants
while ( args->vcf_rbuf.n )
{
if (args->chain) {
print_chain(args);
destroy_chain(args);
}
bcf1_t *rec = args->vcf_buf[args->vcf_rbuf.f];
if ( rec->rid!=args->rid || ( args->fa_end_pos && rec->pos > args->fa_end_pos ) ) break;
int i = rbuf_shift(&args->vcf_rbuf);
apply_variant(args, args->vcf_buf[i]);
}
flush_fa_buffer(args, 0);
init_region(args, str.s+1);
continue;
}
args->fa_length += str.l;
args->fa_src_pos += str.l;
// determine if uppercase or lowercase is used in this fasta file
if ( args->fa_case==-1 ) args->fa_case = toupper(str.s[0])==str.s[0] ? 1 : 0;
if ( args->mask && args->rid>=0) mask_region(args, str.s, str.l);
kputs(str.s, &args->fa_buf);
bcf1_t **rec_ptr = NULL;
while ( args->rid>=0 && (rec_ptr = next_vcf_line(args)) )
{
bcf1_t *rec = *rec_ptr;
// still the same chr and the same region? if not, fasta buf can be flushed
if ( rec->rid!=args->rid || ( args->fa_end_pos && rec->pos > args->fa_end_pos ) )
{
// save the vcf record until next time and flush
unread_vcf_line(args, rec_ptr);
rec_ptr = NULL;
break;
}
// is the vcf record well beyond cached fasta buffer? if yes, the buf can be flushed
if ( args->fa_ori_pos + args->fa_buf.l - args->fa_mod_off <= rec->pos )
{
unread_vcf_line(args, rec_ptr);
rec_ptr = NULL;
break;
}
// is the cached fasta buffer full enough? if not, read more fasta, no flushing
if ( args->fa_ori_pos + args->fa_buf.l - args->fa_mod_off < rec->pos + rec->rlen )
{
unread_vcf_line(args, rec_ptr);
break;
}
apply_variant(args, rec);
}
if ( !rec_ptr ) flush_fa_buffer(args, 60);
}
if (args->chain) {
print_chain(args);
destroy_chain(args);
}
flush_fa_buffer(args, 0);
hts_close(fasta);
free(str.s);
}
static void usage(args_t *args)
{
fprintf(stderr, "\n");
fprintf(stderr, "About: Create consensus sequence by applying VCF variants to a reference\n");
fprintf(stderr, " fasta file.\n");
fprintf(stderr, "Usage: bcftools consensus [OPTIONS] <file.vcf>\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " -f, --fasta-ref <file> reference sequence in fasta format\n");
fprintf(stderr, " -H, --haplotype <1|2> apply variants for the given haplotype\n");
fprintf(stderr, " -i, --iupac-codes output variants in the form of IUPAC ambiguity codes\n");
fprintf(stderr, " -m, --mask <file> replace regions with N\n");
fprintf(stderr, " -o, --output <file> write output to a file [standard output]\n");
fprintf(stderr, " -c, --chain <file> write a chain file for liftover\n");
fprintf(stderr, " -s, --sample <name> apply variants of the given sample\n");
fprintf(stderr, "Examples:\n");
fprintf(stderr, " # Get the consensus for one region. The fasta header lines are then expected\n");
fprintf(stderr, " # in the form \">chr:from-to\".\n");
fprintf(stderr, " samtools faidx ref.fa 8:11870-11890 | bcftools consensus in.vcf.gz > out.fa\n");
fprintf(stderr, "\n");
exit(1);
}
int main_consensus(int argc, char *argv[])
{
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
static struct option loptions[] =
{
{"sample",1,0,'s'},
{"iupac-codes",0,0,'i'},
{"haplotype",1,0,'H'},
{"output",1,0,'o'},
{"fasta-ref",1,0,'f'},
{"mask",1,0,'m'},
{"chain",1,0,'c'},
{0,0,0,0}
};
int c;
while ((c = getopt_long(argc, argv, "h?s:1iH:f:o:m:c:",loptions,NULL)) >= 0)
{
switch (c)
{
case 's': args->sample = optarg; break;
case 'o': args->output_fname = optarg; break;
case 'i': args->output_iupac = 1; break;
case 'f': args->ref_fname = optarg; break;
case 'm': args->mask_fname = optarg; break;
case 'c': args->chain_fname = optarg; break;
case 'H':
args->haplotype = optarg[0] - '0';
if ( args->haplotype <=0 ) error("Expected positive integer with --haplotype\n");
break;
default: usage(args); break;
}
}
if ( optind>=argc ) usage(args);
args->fname = argv[optind];
if ( !args->ref_fname && !isatty(fileno((FILE *)stdin)) ) args->ref_fname = "-";
if ( !args->ref_fname ) usage(args);
init_data(args);
consensus(args);
destroy_data(args);
free(args);
return 0;
}