-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathpbkdf2.py
297 lines (260 loc) · 9.88 KB
/
pbkdf2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#!/usr/bin/python
# -*- coding: ascii -*-
###########################################################################
# pbkdf2 - PKCS#5 v2.0 Password-Based Key Derivation
#
# Copyright (C) 2007-2011 Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# Country of origin: Canada
#
###########################################################################
# Sample PBKDF2 usage:
# from Crypto.Cipher import AES
# from pbkdf2 import PBKDF2
# import os
#
# salt = os.urandom(8) # 64-bit salt
# key = PBKDF2("This passphrase is a secret.", salt).read(32) # 256-bit key
# iv = os.urandom(16) # 128-bit IV
# cipher = AES.new(key, AES.MODE_CBC, iv)
# ...
#
# Sample crypt() usage:
# from pbkdf2 import crypt
# pwhash = crypt("secret")
# alleged_pw = raw_input("Enter password: ")
# if pwhash == crypt(alleged_pw, pwhash):
# print "Password good"
# else:
# print "Invalid password"
#
###########################################################################
__version__ = "1.3"
__all__ = ['PBKDF2', 'crypt']
from struct import pack
from random import randint
import string
import sys
try:
# Use PyCrypto (if available).
from Crypto.Hash import HMAC, SHA as SHA1
except ImportError:
# PyCrypto not available. Use the Python standard library.
import hmac as HMAC
try:
from hashlib import sha1 as SHA1
except ImportError:
# hashlib not available. Use the old sha module.
import sha as SHA1
#
# Python 2.1 thru 3.2 compatibility
#
if sys.version_info[0] == 2:
_0xffffffffL = long(1) << 32
def isunicode(s):
return isinstance(s, unicode)
def isbytes(s):
return isinstance(s, str)
def isinteger(n):
return isinstance(n, (int, long))
def b(s):
return s
def binxor(a, b):
return "".join([chr(ord(x) ^ ord(y)) for (x, y) in zip(a, b)])
def b64encode(data, chars="+/"):
tt = string.maketrans("+/", chars)
return data.encode('base64').replace("\n", "").translate(tt)
from binascii import b2a_hex
else:
_0xffffffffL = 0xffffffff
def isunicode(s):
return isinstance(s, str)
def isbytes(s):
return isinstance(s, bytes)
def isinteger(n):
return isinstance(n, int)
def callable(obj):
return hasattr(obj, '__call__')
def b(s):
return s.encode("latin-1")
def binxor(a, b):
return bytes([x ^ y for (x, y) in zip(a, b)])
from base64 import b64encode as _b64encode
def b64encode(data, chars="+/"):
if isunicode(chars):
return _b64encode(data, chars.encode('utf-8')).decode('utf-8')
else:
return _b64encode(data, chars)
from binascii import b2a_hex as _b2a_hex
def b2a_hex(s):
return _b2a_hex(s).decode('us-ascii')
xrange = range
class PBKDF2(object):
"""PBKDF2.py : PKCS#5 v2.0 Password-Based Key Derivation
This implementation takes a passphrase and a salt (and optionally an
iteration count, a digest module, and a MAC module) and provides a
file-like object from which an arbitrarily-sized key can be read.
If the passphrase and/or salt are unicode objects, they are encoded as
UTF-8 before they are processed.
The idea behind PBKDF2 is to derive a cryptographic key from a
passphrase and a salt.
PBKDF2 may also be used as a strong salted password hash. The
'crypt' function is provided for that purpose.
Remember: Keys generated using PBKDF2 are only as strong as the
passphrases they are derived from.
"""
def __init__(self, passphrase, salt, iterations=1000,
digestmodule=SHA1, macmodule=HMAC):
self.__macmodule = macmodule
self.__digestmodule = digestmodule
self._setup(passphrase, salt, iterations, self._pseudorandom)
def _pseudorandom(self, key, msg):
"""Pseudorandom function. e.g. HMAC-SHA1"""
return self.__macmodule.new(key=key, msg=msg,
digestmod=self.__digestmodule).digest()
def read(self, bytes):
"""Read the specified number of key bytes."""
if self.closed:
raise ValueError("file-like object is closed")
size = len(self.__buf)
blocks = [self.__buf]
i = self.__blockNum
while size < bytes:
i += 1
if i > _0xffffffffL or i < 1:
# We could return "" here, but
raise OverflowError("derived key too long")
block = self.__f(i)
blocks.append(block)
size += len(block)
buf = b("").join(blocks)
retval = buf[:bytes]
self.__buf = buf[bytes:]
self.__blockNum = i
return retval
def __f(self, i):
# i must fit within 32 bits
assert 1 <= i <= _0xffffffffL
U = self.__prf(self.__passphrase, self.__salt + pack("!L", i))
result = U
for j in xrange(2, 1+self.__iterations):
U = self.__prf(self.__passphrase, U)
result = binxor(result, U)
return result
def hexread(self, octets):
"""Read the specified number of octets. Return them as hexadecimal.
Note that len(obj.hexread(n)) == 2*n.
"""
return b2a_hex(self.read(octets))
def _setup(self, passphrase, salt, iterations, prf):
# Sanity checks:
# passphrase and salt must be str or unicode (in the latter
# case, we convert to UTF-8)
if isunicode(passphrase):
passphrase = passphrase.encode("UTF-8")
elif not isbytes(passphrase):
raise TypeError("passphrase must be str or unicode")
if isunicode(salt):
salt = salt.encode("UTF-8")
elif not isbytes(salt):
raise TypeError("salt must be str or unicode")
# iterations must be an integer >= 1
if not isinteger(iterations):
raise TypeError("iterations must be an integer")
if iterations < 1:
raise ValueError("iterations must be at least 1")
# prf must be callable
if not callable(prf):
raise TypeError("prf must be callable")
self.__passphrase = passphrase
self.__salt = salt
self.__iterations = iterations
self.__prf = prf
self.__blockNum = 0
self.__buf = b("")
self.closed = False
def close(self):
"""Close the stream."""
if not self.closed:
del self.__passphrase
del self.__salt
del self.__iterations
del self.__prf
del self.__blockNum
del self.__buf
self.closed = True
def crypt(word, salt=None, iterations=None):
"""PBKDF2-based unix crypt(3) replacement.
The number of iterations specified in the salt overrides the 'iterations'
parameter.
The effective hash length is 192 bits.
"""
# Generate a (pseudo-)random salt if the user hasn't provided one.
if salt is None:
salt = _makesalt()
# salt must be a string or the us-ascii subset of unicode
if isunicode(salt):
salt = salt.encode('us-ascii').decode('us-ascii')
elif isbytes(salt):
salt = salt.decode('us-ascii')
else:
raise TypeError("salt must be a string")
# word must be a string or unicode (in the latter case, we convert to UTF-8)
if isunicode(word):
word = word.encode("UTF-8")
elif not isbytes(word):
raise TypeError("word must be a string or unicode")
# Try to extract the real salt and iteration count from the salt
if salt.startswith("$p5k2$"):
(iterations, salt, dummy) = salt.split("$")[2:5]
if iterations == "":
iterations = 400
else:
converted = int(iterations, 16)
if iterations != "%x" % converted: # lowercase hex, minimum digits
raise ValueError("Invalid salt")
iterations = converted
if not (iterations >= 1):
raise ValueError("Invalid salt")
# Make sure the salt matches the allowed character set
allowed = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789./"
for ch in salt:
if ch not in allowed:
raise ValueError("Illegal character %r in salt" % (ch,))
if iterations is None or iterations == 400:
iterations = 400
salt = "$p5k2$$" + salt
else:
salt = "$p5k2$%x$%s" % (iterations, salt)
rawhash = PBKDF2(word, salt, iterations).read(24)
return salt + "$" + b64encode(rawhash, "./")
# Add crypt as a static method of the PBKDF2 class
# This makes it easier to do "from PBKDF2 import PBKDF2" and still use
# crypt.
PBKDF2.crypt = staticmethod(crypt)
def _makesalt():
"""Return a 48-bit pseudorandom salt for crypt().
This function is not suitable for generating cryptographic secrets.
"""
binarysalt = b("").join([pack("@H", randint(0, 0xffff)) for i in range(3)])
return b64encode(binarysalt, "./")
# vim:set ts=4 sw=4 sts=4 expandtab: