-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeasClim.R
115 lines (96 loc) · 3 KB
/
SeasClim.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
SeasClim<-function(X,begmo,endmo,kopt) {
# Seasonalize monthly climate data in a 3-column (year-month-value) input format
# D Meko
# Last revised 2022 MaY 02
#
# Seasonalize monthly climate data in a 3-column (year-month-value) input format
#
#--- INPUT
#
# X [matrix]: monthly data in 3 columns: year-month-value
# begmo [numeric]: start month of season (1=Jan, 12=Dec)
# endmo [numeric]: end month of season (1=Jan, 12=Dec).
# kopt [numeric]: indicator of how data should be seasonalized
# =1: sum over months
# =2: average over months
#
#---OUTPUT
#
# Output: list with fields
# F [matrix, 2-col] year and seasonalized climate variable
# eflag: error flag
# = 0 no problem
# = 1 input data not consistent in having 12 months per year, with year incrementing by 1
#
#---NOTES
#
# Seasons may cross year boundary, but may not exceed 12 months in length
#--- NUMBER OF MONTHS IN SEASON
if (endmo>=begmo){
nmos <- endmo-begmo+1
} else {
nmos <- endmo + (12-begmo)+1
}
#--- GET INDEX TO ROWS OF ALL END MONTH, START MONTH
L <- X[,2]==endmo
i2 <-which(L)
L <- X[,2]==begmo
i1 <-which(L)
#---ADJUST LAST INDICES SO THAT START MONTH PRECEDES END MONTH
if (i1[length(i1)]>i2[length(i2)]){
i1 <- i1[-length(i1)]
}
#---ADJUST FIRST INDICES SO THAT START MONTH PRECEDES END MONTH
if (i1[1]>i2[1]){
i2 <- i2[-1]
}
#--- CHECK INDICES
#
# Nummber of start months must equal number of end months; intervals must all be equal to expected number
# of months in season; year of end month must increment by 1
L1 <- length(i1)==length(i2)
n1 <- i2-i1+1
L2 <- all(n1==nmos)
yr <- X[i2,1] # years of end month
d <-diff(yr)
L3<-FALSE
if (all(d==1)){
L3<-TRUE
}
L <- L1 && L2 && L3
if (!L){
eFlag<-1
Output <- list('tsm'=NA,'eFlag'=eFlag,'begmo'=begmo,'endmo'=endmo)
return(Output)
}
rm(L1,L2,L3,L,n1,d)
#---BUILD INDEX MATRIX TO PULL SUBSET OF MONTHLY DATA
#
# Index to rows of input matrix X. Goal is to use index matrix to make subset matrix of values in X and
# then sum or average over the submatrix to get the seasonalized data
I2 <- t(t(rep(1, nmos))) %*% t(i2) # row-dupe end-month indices into matrix with nmos rows
# Build increment matrix
a = (nmos-1):0
a=-1.0*a
A <- t(t(rep(1, length(i2)))) %*% t(a)
A <- t(A)
I3 <-I2+A # Combine into final extraction index matris
nrow <- dim(I3)[1]
ncol <-dim(I3)[2]
#---PULL SUBMATRX MONTHLY DATA, SUM OR AVERAGE OVER ROWS, BIND WITH YEAR
x <- X[,3] # vector of data values
Y <- x[I3] # vector of subsets of monthly data
dim(Y)=c(nrow,ncol) # mxn m is # months in season and n years
# Treat as P or T
if (kopt==1){
y <- colSums(Y)
}else{
y <-colMeans(Y)
}
y <- colMeans(Y) # vector of seasonalized data
F <-cbind(yr,y) # 2-col matrix, year and value
eFlag<-0
#--- ORGANIZE OUTPUT
Output <- list('tsm'=F,'eFlag'=eFlag,'begmo'=begmo,'endmo'=endmo)
return(Output)
}