-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsorGPU_DKfinal.cu
482 lines (395 loc) · 15.3 KB
/
sorGPU_DKfinal.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/*
Uses N blocks with N threads
SOR Stokes Flow with no slip b.c. on top/bottom and no flux b.c. on left/right written by Dmitriy Kats
Inputs: N is the number of grid points in each direction,
mu is the viscosity
Pdiff is the pressure drop in the x direction
omega is the SOR factor
toltau is the tolerance of the residual
Outputs: The final velocities and pressure
*/
#include <stdlib.h>
#include <stdio.h>
#include<math.h>
#include <time.h>
//Kernels to udpate u, v, and p
//The inputs also considers if it is a red or black point udpate
__global__ void update_u(double* U, double* Uresid, double* P, double* Presid, double* FAC1, double* OMEGA, int RedorBlack);
__global__ void update_v(double* V, double* Vresid, double* P, double* Presid, double* FAC1, double* OMEGA, int RedorBlack);
__global__ void update_p(double* U, double* V, double* P, double* Presid, double* FAC1, double* OMEGA, double* Pdiff, int RedorBlack);
__device__ static int dev_N;
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
int main (int argc, char * argv[]){
// Choose the GPU card
cudaDeviceProp prop;
int dev;
memset(&prop, 0, sizeof(cudaDeviceProp));
prop.multiProcessorCount = 13;
cudaChooseDevice(&dev, &prop);
cudaSetDevice(dev);
// Create the CUDA events that will be used for timing the kernel function
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
// Click, the timer has started running
cudaEventRecord(start, 0);
int N;
double mu, pdiff, omega, toltau;
N=atoi(argv[1]);
mu=atof(argv[2]);
pdiff=atof(argv[3]);
omega=atof(argv[4]);
toltau=atof(argv[5]);
double dx=1.0/((double)N-1.0);
double fac1=dx/mu; //precompute the factor
double residABSMAX = 99.0;
int numberOfIterations=0;
double* dev_fac1;
double* dev_omega;
double* dev_pdiff;
double *dev_u, *dev_uresid;
double *dev_v, *dev_vresid;
double *dev_p, *dev_presid;
//allocate memory for the velocities and pressure
double *u = (double*)malloc(N*(N-1)*sizeof(double));
double *uresid = (double*)malloc(N*(N-1)*sizeof(double));
double *v = (double*)malloc((N-1)*N*sizeof(double));
double *vresid = (double*)malloc((N-1)*N*sizeof(double));
double *p = (double*)malloc((N+1)*(N-1)*sizeof(double));
double *presid = (double*)malloc((N+1)*(N-1)*sizeof(double));
//allocate Cuda memory
cudaMalloc((void**)&dev_fac1, sizeof(double));
cudaMalloc((void**)&dev_omega, sizeof(double));
cudaMalloc((void**)&dev_pdiff, sizeof(double));
cudaMalloc((void**)&dev_u, N*(N-1)*sizeof(double));
cudaMalloc((void**)&dev_uresid, N*(N-1)*sizeof(double));
cudaMalloc((void**)&dev_v, (N-1)*N*sizeof(double));
cudaMalloc((void**)&dev_vresid, (N-1)*N*sizeof(double));
cudaMalloc((void**)&dev_p, (N+1)*(N-1)*sizeof(double));
cudaMalloc((void**)&dev_presid, (N+1)*(N-1)*sizeof(double));
//Intialize to zero
int i, j;
for(i=0; i<N; i++)
{
for(j=0; j<N-1; j++)
{
u[i+j*N]=0.0;
uresid[i+j*N]=0.0;
}
}
for(i=0; i<N-1; i++)
{
for(j=0; j<N; j++)
{
v[i+j*(N-1)]=0.0;
vresid[i+j*(N-1)]=0.0;
}
}
for(i=0; i<N+1; i++)
{
for(j=0; j<N-1; j++)
{
p[i+j*(N+1)]=0.0;
presid[i+j*(N+1)]=0.0;
}
}
//Copy the values to the device
cudaMemcpy(dev_u, u, N*(N-1)*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(dev_uresid, uresid, N*(N-1)*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(dev_v, v, (N-1)*N*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(dev_vresid, vresid, (N-1)*N*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(dev_p, p, (N+1)*(N-1)*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(dev_presid, presid, (N+1)*(N-1)*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(dev_N, &N, sizeof(int));
cudaMemcpy(dev_fac1, &fac1, sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(dev_omega, &omega, sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(dev_pdiff, &pdiff, sizeof(double), cudaMemcpyHostToDevice);
dim3 meshDim(N,N); //This one will be for the velocities
dim3 meshDim2(N+1,N); //This one will be for the pressure
while(residABSMAX>=toltau)
{
residABSMAX=0.1*toltau;
//Solve in the next six lines
update_u<<<meshDim,1>>>(dev_u, dev_uresid, dev_p, dev_presid, dev_fac1, dev_omega, 0);
update_u<<<meshDim,1>>>(dev_u, dev_uresid, dev_p, dev_presid, dev_fac1, dev_omega, 1);
update_v<<<meshDim,1>>>(dev_v, dev_vresid, dev_p, dev_presid, dev_fac1, dev_omega, 0);
update_v<<<meshDim,1>>>(dev_v, dev_vresid, dev_p, dev_presid, dev_fac1, dev_omega, 1);
update_p<<<meshDim2,1>>>(dev_u, dev_v, dev_p, dev_presid, dev_fac1, dev_omega, dev_pdiff, 0);
update_p<<<meshDim2,1>>>(dev_u, dev_v, dev_p, dev_presid, dev_fac1, dev_omega, dev_pdiff, 1);
//This is slow but I ran out of time
//Copy the residuals to the host to find the max residual
cudaMemcpy(uresid, dev_uresid, N*(N-1)*sizeof(double), cudaMemcpyDeviceToHost);
cudaMemcpy(vresid, dev_vresid, (N-1)*N*sizeof(double), cudaMemcpyDeviceToHost);
cudaMemcpy(presid, dev_presid, (N+1)*(N-1)*sizeof(double), cudaMemcpyDeviceToHost);
for(i=0; i<N; i++)
{
for(j=0; j<N-1; j++)
{
if(fabs(uresid[i+j*N])>residABSMAX)
{
residABSMAX=fabs(uresid[i+j*N]);
}
}
}
for(i=0; i<N-1; i++)
{
for(j=0; j<N; j++)
{
if(fabs(vresid[i+j*(N-1)])>residABSMAX)
{
residABSMAX=fabs(vresid[i+j*(N-1)]);
}
}
}
for(i=0; i<N+1; i++)
{
for(j=0; j<N-1; j++)
{
if(fabs(presid[i+j*(N+1)])>residABSMAX)
{
residABSMAX=fabs(presid[i+j*(N+1)]);
}
}
}
//Check for errors
gpuErrchk(cudaPeekAtLastError() );
gpuErrchk(cudaDeviceSynchronize() );
numberOfIterations+=1;
if (numberOfIterations>10000)
{ //fail safe to save data and exit
cudaMemcpy(u, dev_u, N*(N-1)*sizeof(double), cudaMemcpyDeviceToHost);
cudaMemcpy(v, dev_v, (N-1)*N*sizeof(double), cudaMemcpyDeviceToHost);
cudaMemcpy(p, dev_p, (N+1)*(N-1)*sizeof(double), cudaMemcpyDeviceToHost);
printf("Reached fail safe. The max residual is %10e. The number of iterations is %i\n", residABSMAX, numberOfIterations);
FILE *fpu = fopen("StokesU.out", "wb");
fwrite(u, sizeof(double), N*(N-1), fpu);
fclose (fpu);
FILE *fpv = fopen("StokesV.out", "wb");
fwrite(v, sizeof(double), (N-1)*N, fpv);
fclose (fpv);
FILE *fpP = fopen("StokesP.out", "wb");
fwrite(p, sizeof(double), (N+1)*(N-1), fpP);
fclose (fpP);
cudaFree(dev_u);
cudaFree(dev_uresid);
cudaFree(dev_v);
cudaFree(dev_vresid);
cudaFree(dev_p);
cudaFree(dev_presid);
cudaFree(dev_fac1);
cudaFree(dev_omega);
cudaFree(dev_pdiff);
free(u);
free(uresid);
free(v);
free(vresid);
free(p);
free(presid);
return 0;
}
}
cudaMemcpy(u, dev_u, N*(N-1)*sizeof(double), cudaMemcpyDeviceToHost);
cudaMemcpy(v, dev_v, (N-1)*N*sizeof(double), cudaMemcpyDeviceToHost);
cudaMemcpy(p, dev_p, (N+1)*(N-1)*sizeof(double), cudaMemcpyDeviceToHost);
//export the data
FILE *fpu = fopen("StokesU.out", "wb");
fwrite(u, sizeof(double), N*(N-1), fpu);
fclose (fpu);
FILE *fpv = fopen("StokesV.out", "wb");
fwrite(v, sizeof(double), (N-1)*N, fpv);
fclose (fpv);
FILE *fpP = fopen("StokesP.out", "wb");
fwrite(p, sizeof(double), (N+1)*(N-1), fpP);
fclose (fpP);
//stop the timer
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
// The elapsed time is computed by taking the difference between start and stop
float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("N:%i omega:%f\n", N, omega);
printf("The max residual is %10e and the number of iterations is %i\n", residABSMAX, numberOfIterations);
printf("Time: %gms\n", elapsedTime);
//clean up timer
cudaEventDestroy(start);
cudaEventDestroy(stop);
cudaFree(dev_u);
cudaFree(dev_uresid);
cudaFree(dev_v);
cudaFree(dev_vresid);
cudaFree(dev_p);
cudaFree(dev_presid);
cudaFree(dev_fac1);
cudaFree(dev_omega);
free(u);
free(uresid);
free(v);
free(vresid);
free(p);
free(presid);
return 0;
}
__global__ void update_u(double* U, double* Uresid, double* P, double* Presid, double* FAC1, double* OMEGA, int RorB)
{
int EvenOrOdd=(blockIdx.x+blockIdx.y)%2;
int u_ij00 = blockIdx.x + blockIdx.y * gridDim.x;
int u_ijp0 = (blockIdx.x + 1)%gridDim.x + blockIdx.y * gridDim.x; //down for u
int u_ijm0 = (blockIdx.x + gridDim.x - 1)%gridDim.x + blockIdx.y * gridDim.x; //up for u
int u_ij0p = blockIdx.x + ((blockIdx.y + 1)%gridDim.y) * gridDim.x; //east for u
int u_ij0m = blockIdx.x + ((blockIdx.y + gridDim.y - 1)%gridDim.y) * gridDim.x; //west for u
int p_ij00 = blockIdx.x + blockIdx.y * (gridDim.x+1);
int p_ijp0 = (blockIdx.x + 1)%(gridDim.x+1) + blockIdx.y * (gridDim.x+1); //down for p
//int p_ijm0 = (blockIdx.x + gridDim.x)%(gridDim.x+1) + blockIdx.y * (gridDim.x+1); //up for p
//int p_ij0p = blockIdx.x + ((blockIdx.y + 1)%gridDim.y) *(gridDim.x+1); //east for p
//int p_ij0m = blockIdx.x + ((blockIdx.y + gridDim.y - 1)%gridDim.y) * (gridDim.x+1); //west for p
//UPDATE INLET
if (blockIdx.y==0 && blockIdx.x==0 && EvenOrOdd==RorB)
{ //Corner point
Uresid[u_ij00]= (-U[u_ij00]+ U[u_ijp0])+(-3.0*U[u_ij00]+U[u_ij0p])-*FAC1*(P[p_ijp0]-P[p_ij00]);
U[u_ij00]=U[u_ij00]+*OMEGA*Uresid[u_ij00];
}
if (blockIdx.y>0 && blockIdx.y<(dev_N-2) && blockIdx.x==0 && EvenOrOdd==RorB)
{ //Middle points
Uresid[u_ij00]=(-U[u_ij00]+ U[u_ijp0])+(U[u_ij0m]-2.0*U[u_ij00]+U[u_ij0p])-*FAC1*(P[p_ijp0]-P[p_ij00]);
U[u_ij00]=U[u_ij00]+*OMEGA*Uresid[u_ij00];
}
if (blockIdx.y==(dev_N-2) && blockIdx.x==0 && EvenOrOdd==RorB)
{ //Corner point
Uresid[u_ij00]= (-U[u_ij00]+ U[u_ijp0])+(U[u_ij0m]-3.0*U[u_ij00])-*FAC1*(P[p_ijp0]-P[p_ij00]);
U[u_ij00]=U[u_ij00]+*OMEGA*Uresid[u_ij00];
}
//UPDATE BULK
if (blockIdx.y==0 && blockIdx.x>0 && blockIdx.x<(dev_N-1)&& EvenOrOdd==RorB)
{ // boundary condition
Uresid[u_ij00]= (U[u_ijm0]-2.0*U[u_ij00]+ U[u_ijp0])+(-3.0*U[u_ij00]+U[u_ij0p])-*FAC1*(P[p_ijp0]-P[p_ij00]);
U[u_ij00]=U[u_ij00]+*OMEGA*Uresid[u_ij00];
}
if (blockIdx.y>0 && blockIdx.y<(dev_N-2) && blockIdx.x>0 && blockIdx.x<(dev_N-1)&& EvenOrOdd==RorB)
{ //interior
Uresid[u_ij00]= (U[u_ijm0]-2.0*U[u_ij00]+ U[u_ijp0])+(U[u_ij0m]-2.0*U[u_ij00]+U[u_ij0p])-*FAC1*(P[p_ijp0]-P[p_ij00]);
U[u_ij00]=U[u_ij00]+*OMEGA*Uresid[u_ij00];
}
if (blockIdx.y==(dev_N-2) && blockIdx.x>0 && blockIdx.x<(dev_N-1)&& EvenOrOdd==RorB)
{ //boundary condition
Uresid[u_ij00]= (U[u_ijm0]-2.0*U[u_ij00]+ U[u_ijp0])+(U[u_ij0m]-3.0*U[u_ij00])-*FAC1*(P[p_ijp0]-P[p_ij00]);
U[u_ij00]=U[u_ij00]+*OMEGA*Uresid[u_ij00];
}
//Update Outlet
if (blockIdx.y==0 && blockIdx.x==(dev_N-1)&& EvenOrOdd==RorB)
{ //boundary condition
Uresid[u_ij00]= (U[u_ijm0]-U[u_ij00])+(-3.0*U[u_ij00]+U[u_ij0p])-*FAC1*(P[p_ijp0]-P[p_ij00]);
U[u_ij00]=U[u_ij00]+*OMEGA*Uresid[u_ij00];
}
if (blockIdx.y>0 && blockIdx.y<(dev_N-2) && blockIdx.x==(dev_N-1)&& EvenOrOdd==RorB)
{ //middle points on outlet
Uresid[u_ij00]= (U[u_ijm0]-U[u_ij00])+(U[u_ij0m]-2.0*U[u_ij00]+U[u_ij0p])-*FAC1*(P[p_ijp0]-P[p_ij00]);
U[u_ij00]=U[u_ij00]+*OMEGA*Uresid[u_ij00];
}
if (blockIdx.y==(dev_N-2) && blockIdx.x==(dev_N-1)&& EvenOrOdd==RorB)
{ //boundary node
Uresid[u_ij00]= (U[u_ijm0]-U[u_ij00])+(U[u_ij0m]-3.0*U[u_ij00])-*FAC1*(P[p_ijp0]-P[p_ij00]);
U[u_ij00]=U[u_ij00]+*OMEGA*Uresid[u_ij00];
}
__syncthreads();
}
__global__ void update_v(double* V, double* Vresid, double* P, double* Presid, double* FAC1, double* OMEGA, int RorB)
{
int EvenOrOdd=(blockIdx.x+blockIdx.y)%2;
int v_ij00 = blockIdx.x + blockIdx.y * (gridDim.x-1);
int v_ijp0 = (blockIdx.x + 1)%(gridDim.x-1) + blockIdx.y * (gridDim.x-1); //down for v
int v_ijm0 = (blockIdx.x + gridDim.x - 2)%(gridDim.x-1) + blockIdx.y * (gridDim.x-1); //up for v
int v_ij0p = blockIdx.x + ((blockIdx.y + 1)%gridDim.y) * (gridDim.x-1); //east for v
int v_ij0m = blockIdx.x + ((blockIdx.y + gridDim.y - 1)%gridDim.y) * (gridDim.x-1); //west for v
//int p_ij00 = blockIdx.x + blockIdx.y * (gridDim.x+1);
int p_ijp0 = (blockIdx.x + 1)%(gridDim.x+1) + blockIdx.y * (gridDim.x+1); //down for p
//int p_ijm0 = (blockIdx.x + gridDim.x)%(gridDim.x+1) + blockIdx.y * (gridDim.x+1); //up for p
//int p_ij0p = blockIdx.x + ((blockIdx.y + 1)%gridDim.y) *(gridDim.x+1); //east for p
//int p_ij0m = blockIdx.x + ((blockIdx.y + gridDim.y - 1)%gridDim.y) * (gridDim.x+1); //west for p
int p_ijpm = (blockIdx.x + 1)%(gridDim.x+1) + ((blockIdx.y + gridDim.y - 1)%gridDim.y) * (gridDim.x+1); //sw for p
//Update inlet similarly to above
if (blockIdx.y==0 && blockIdx.x==0 && EvenOrOdd==RorB)
{ //no velocity boundary condition
Vresid[v_ij00]= 0.0;
V[v_ij00]=0.0;
}
if (blockIdx.y>0 && blockIdx.y<(dev_N-1) && blockIdx.x==0 && EvenOrOdd==RorB)
{
Vresid[v_ij00]=(-V[v_ij00]+ V[v_ijp0])+(V[v_ij0m]-2.0*V[v_ij00]+V[v_ij0p])-*FAC1*(P[p_ijp0]-P[p_ijpm]);
V[v_ij00]=V[v_ij00]+*OMEGA*Vresid[v_ij00];
}
if (blockIdx.y==(dev_N-1) && blockIdx.x==0 && EvenOrOdd==0)
{
Vresid[v_ij00]= 0.0;
V[v_ij00]=0.0;
}
//Update Bulk similarly to above
if (blockIdx.y==0 && blockIdx.x>0 && blockIdx.x<(dev_N-2)&& EvenOrOdd==RorB)
{
Vresid[v_ij00]= 0.0;
V[v_ij00]=0.0;
}
if (blockIdx.y>0 && blockIdx.y<(dev_N-1) && blockIdx.x>0 && blockIdx.x<(dev_N-2)&& EvenOrOdd==RorB)
{
Vresid[v_ij00]=(V[v_ijm0]-2.0*V[v_ij00]+ V[v_ijp0])+(V[v_ij0m]-2.0*V[v_ij00]+V[v_ij0p])-*FAC1*(P[p_ijp0]-P[p_ijpm]);
V[v_ij00]=V[v_ij00]+*OMEGA*Vresid[v_ij00];
}
if (blockIdx.y==(dev_N-1) && blockIdx.x>0 && blockIdx.x<(dev_N-2)&& EvenOrOdd==RorB)
{
Vresid[v_ij00]=0.0;
V[v_ij00]=0.0;
}
//Update Outlet
if (blockIdx.y==0 && blockIdx.x==(dev_N-2)&& EvenOrOdd==RorB)
{
Vresid[v_ij00]= 0.0;
V[v_ij00]=0.0;
}
if (blockIdx.y>0 && blockIdx.y<(dev_N-1) && blockIdx.x==(dev_N-2)&& EvenOrOdd==RorB)
{
Vresid[v_ij00]=(V[v_ijm0]-V[v_ij00])+(V[v_ij0m]-2.0*V[v_ij00]+V[v_ij0p])-*FAC1*(P[p_ijp0]-P[p_ijpm]);
V[v_ij00]=V[v_ij00]+*OMEGA*Vresid[v_ij00];
}
if (blockIdx.y==(dev_N-1) && blockIdx.x==(dev_N-2)&& EvenOrOdd==RorB)
{
Vresid[v_ij00]= 0.0;
V[v_ij00]=0.0;
}
__syncthreads();
}
__global__ void update_p(double* U, double* V, double* P, double* Presid, double* FAC1, double* OMEGA, double* Pdiff, int RorB)
{
int EvenOrOdd=((int) (blockIdx.x+blockIdx.y)%2);
int u_ij00 = blockIdx.x + blockIdx.y * (gridDim.x-1);
int u_ijm0 = (blockIdx.x + gridDim.x - 2)%(gridDim.x-1) + blockIdx.y * (gridDim.x-1); //up for u
int v_ijm0 = (blockIdx.x + gridDim.x - 3)%(gridDim.x-2) + blockIdx.y * (gridDim.x-2); //up for v
int v_ijmp = (blockIdx.x + gridDim.x - 3)%(gridDim.x-2) + ((blockIdx.y + 1)%gridDim.y) * (gridDim.x-2);
int p_ij00 = blockIdx.x + blockIdx.y * (gridDim.x);
int p_ijp0 = (blockIdx.x + 1)%(gridDim.x) + blockIdx.y * (gridDim.x); //down for p
int p_ijm0 = (blockIdx.x + gridDim.x-1)%(gridDim.x) + blockIdx.y * (gridDim.x); //up for p
//Update the boundary with the right pressure drop
if (blockIdx.y<(dev_N-1) && blockIdx.x==0 && EvenOrOdd==RorB)
{
Presid[p_ij00]=2.0*(*Pdiff)-P[p_ijp0]-P[p_ij00];
P[p_ij00]=2.0*(*Pdiff)-P[p_ijp0];
}
//Update interior nodes
if (blockIdx.y<(dev_N-1) && blockIdx.x>0 && blockIdx.x<(dev_N) && EvenOrOdd==RorB)
{
Presid[p_ij00]=-(U[u_ij00]-U[u_ijm0])-(V[v_ijmp]-V[v_ijm0]);
P[p_ij00]=P[p_ij00]+*OMEGA*Presid[p_ij00];
}
//Update boundary conditions
if (blockIdx.y<(dev_N-1) && blockIdx.x==(dev_N) && EvenOrOdd==RorB)
{
P[p_ij00]=-P[p_ijm0];
}
__syncthreads();
}