-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTheAttraIndexOfGlobEcon.Rmd
720 lines (560 loc) · 35.7 KB
/
TheAttraIndexOfGlobEcon.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
---
title: "The Attractiveness Index of Global Economies (Oct. 2015)"
author: "Dmitrij Petrov (@dmpe)"
date: "`r format(Sys.time(), '%b %d %Y')`"
output:
html_document:
css: TheAttraIndexOfGlobEcon.css
fig_height: 7
fig_width: 10
number_sections: yes
toc: yes
mathjax: null
---
# Intro
This is a short `code-summary`, which shows how I have created <i>The Attractiveness Index of Global Economies</i> in my [bachelor thesis](https://dmpe.github.io/PapersAndArticles/thesis/). The ONLY difference with the original text is that this summary uses (kind-of) latest data available as of October 2015 (the thesis was submitted in mid-July 2015).
The source code for the thesis can be found at GitHub: <https://github.com/dmpe/bachelor>
# Libraries
```{r, echo=TRUE, message=FALSE, warning=FALSE}
library(grid)
library(gridExtra)
library(rvest)
library(plyr)
library(dplyr)
library(stringr)
library(xlsx)
library(Quandl)
library(scales)
library(corrplot)
library(ellipse)
library(psych)
library(cluster)
library(ggplot2)
library(clustrd)
library(reshape2)
set.seed(5154)
```
# 30 Counties
```{r}
selectedCountries <- list("Korea", "Singapore", "Japan", "Chile", "Czech Republic", "Nigeria", "China", "Germany", "Switzerland",
"Mexico", "Jordan", "Brazil", "Russia", "United States", "United Kingdom", "United Arab Emirates",
"Australia", "South Africa", "Kenya", "Finland", "Canada", "Israel", "New Zealand", "France", "Hungary",
"Thailand", "Indonesia", "Ghana", "Colombia", "Turkey")
```
# Data Sources
Based on chapter 2.2, page 15ff.
## Human Development's Educational Index (UNDP)
```{r}
# "Extract-HTML" way
hdi <- read_html('http://hdr.undp.org/en/content/education-index')
hdi <- hdi %>%
html_node('.table') %>%
html_table(header = T)
hdi <- hdi[1:187,c("Country", "2013")]
hdi <- plyr::rename(hdi, c(`2013` = "HDIEducatIndex"))
hdi$Country[hdi$Country == "Korea (Republic of)"] <- "Korea"
hdi$Country[hdi$Country == "Russian Federation"] <- "Russia"
hdi$HDIEducatIndex <- as.numeric(hdi$HDIEducatIndex)
head(hdi)
```
## Pearson’s Learning Curve Index
```{r}
# Data as of January 2014
learningCurveData <- read.xlsx("1_RawData/DataSources/learningcurve.xlsx", sheetIndex = 1, startRow = 18, endRow = 58)
learningCurveData <- plyr::rename(learningCurveData, c(NA. = "Country", Overall.Index = "LearningCurve_Index"))
# sapply(learningCurveData, class) # factors -> to char
learningCurveData$Country <- str_trim(learningCurveData$Country, side = "both")
learningCurveData$Country[learningCurveData$Country == "South Korea"] <- "Korea"
learningCurveData$Country[learningCurveData$Country == "Hong Kong-China"] <- "China"
#' delete some columns
learningCurveData <- learningCurveData[, !(colnames(learningCurveData) %in% c("Cognitive.Skills", "Educational.Attainment",
"Notes", "NA..1", "NA..2"))]
learningCurveData$Ranking_LearningCurve <- seq(1, 40)
head(learningCurveData)
```
## The Youth unemployment rate
```{r, echo=TRUE}
options(width=200)
Country = c("Korea", "Singapore", "Japan", "Chile", "Czech Republic", "Nigeria", "China", "Germany", "Switzerland", "Mexico",
"Jordan", "Brazil", "Russia", "United States", "United Kingdom", "United Arab Emirates", "Australia", "South Africa", "Kenya", "Finland", "Canada", "Israel", "New Zealand", "France", "Hungary", "Thailand", "Indonesia", "Ghana", "Colombia", "Turkey")
Quandl.api_key("GgnxpyUBXHsyQxqp67bY")
Korea <- Quandl("WORLDBANK/KOR_SL_UEM_1524_ZS")[1, 2]
# http://api.worldbank.org/countries/CHN/indicators/SL.UEM.1524.ZS?per_page=1000
# China <- Quandl('WORLDBANK/CHN_SL_UEM_1524_ZS')[1,2]
China <- 10.1
Germany <- Quandl("WORLDBANK/DEU_SL_UEM_1524_ZS")[1, 2]
```
```{r, echo=FALSE}
options(width=200)
Switzerland <- Quandl("WORLDBANK/CHE_SL_UEM_1524_ZS")[1, 2]
Mexico <- Quandl("WORLDBANK/MEX_SL_UEM_1524_ZS")[1, 2]
Brazil <- Quandl("WORLDBANK/BRA_SL_UEM_1524_ZS")[1, 2]
Russia <- Quandl("WORLDBANK/RUS_SL_UEM_1524_ZS")[1, 2]
USA <- Quandl("WORLDBANK/USA_SL_UEM_1524_ZS")[1, 2]
UAE <- Quandl("WORLDBANK/ARE_SL_UEM_1524_ZS")[1, 2]
# http://api.worldbank.org/countries/KEN/indicators/SL.UEM.1524.ZS?per_page=1000
# Kenya <- Quandl('WORLDBANK/KEN_SL_UEM_1524_ZS')[1,2]
Kenya <- 17.1
Finland <- Quandl("WORLDBANK/FIN_SL_UEM_1524_ZS")[1, 2]
NewZeland <- Quandl("WORLDBANK/NZL_SL_UEM_1524_ZS")[1, 2]
Czech <- Quandl("WORLDBANK/CZE_SL_UEM_1524_ZS")[1, 2]
Japan <- Quandl("WORLDBANK/JPN_SL_UEM_1524_ZS")[1, 2]
Chile <- Quandl("WORLDBANK/CHL_SL_UEM_1524_ZS")[1, 2]
Nigeria <- Quandl("WORLDBANK/NGA_SL_UEM_1524_ZS")[1, 2]
SA <- Quandl("WORLDBANK/ZAF_SL_UEM_1524_ZS")[1, 2]
Canada <- Quandl("WORLDBANK/CAN_SL_UEM_1524_ZS")[1, 2]
Australia <- Quandl("WORLDBANK/AUS_SL_UEM_1524_ZS")[1, 2]
UK <- Quandl("WORLDBANK/GBR_SL_UEM_1524_ZS")[1, 2]
Jordan <- Quandl("WORLDBANK/JOR_SL_UEM_1524_ZS")[1, 2]
Israel <- Quandl("WORLDBANK/ISR_SL_UEM_1524_ZS")[1, 2]
Singapore <- Quandl("WORLDBANK/SGP_SL_UEM_1524_ZS")[1, 2]
France <- Quandl("WORLDBANK/FRA_SL_UEM_1524_ZS")[1, 2]
Indonesia <- Quandl("WORLDBANK/IDN_SL_UEM_1524_ZS")[1, 2]
Turkey <- Quandl("WORLDBANK/TUR_SL_UEM_1524_ZS")[1, 2]
Hungary <- Quandl("WORLDBANK/HUN_SL_UEM_1524_ZS")[1, 2]
Ghana <- Quandl("WORLDBANK/GHA_SL_UEM_1524_ZS")[1, 2]
Thailand <- Quandl("WORLDBANK/THA_SL_UEM_1524_ZS")[1, 2]
Colombia <- Quandl("WORLDBANK/COL_SL_UEM_1524_ZS")[1, 2]
unemplo <- data.frame(Country = Country, Unemployment_NonScaled = seq(1, 30), stringsAsFactors = FALSE)
# Unemployment = seq(1, 23),
unemplo$Unemployment_NonScaled[unemplo$Country == "Korea"] <- Korea
unemplo$Unemployment_NonScaled[unemplo$Country == "Singapore"] <- Singapore
unemplo$Unemployment_NonScaled[unemplo$Country == "China"] <- China
unemplo$Unemployment_NonScaled[unemplo$Country == "Germany"] <- Germany
unemplo$Unemployment_NonScaled[unemplo$Country == "Switzerland"] <- Switzerland
unemplo$Unemployment_NonScaled[unemplo$Country == "Mexico"] <- Mexico
unemplo$Unemployment_NonScaled[unemplo$Country == "Brazil"] <- Brazil
unemplo$Unemployment_NonScaled[unemplo$Country == "Russia"] <- Russia
unemplo$Unemployment_NonScaled[unemplo$Country == "United States"] <- USA
unemplo$Unemployment_NonScaled[unemplo$Country == "United Kingdom"] <- UK
unemplo$Unemployment_NonScaled[unemplo$Country == "United Arab Emirates"] <- UAE
unemplo$Unemployment_NonScaled[unemplo$Country == "Australia"] <- Australia
unemplo$Unemployment_NonScaled[unemplo$Country == "South Africa"] <- SA
unemplo$Unemployment_NonScaled[unemplo$Country == "Kenya"] <- Kenya
unemplo$Unemployment_NonScaled[unemplo$Country == "Finland"] <- Finland
unemplo$Unemployment_NonScaled[unemplo$Country == "Canada"] <- Canada
unemplo$Unemployment_NonScaled[unemplo$Country == "Israel"] <- Israel
unemplo$Unemployment_NonScaled[unemplo$Country == "New Zealand"] <- NewZeland
unemplo$Unemployment_NonScaled[unemplo$Country == "Jordan"] <- Jordan
unemplo$Unemployment_NonScaled[unemplo$Country == "Czech Republic"] <- Czech
unemplo$Unemployment_NonScaled[unemplo$Country == "Chile"] <- Chile
unemplo$Unemployment_NonScaled[unemplo$Country == "Japan"] <- Japan
unemplo$Unemployment_NonScaled[unemplo$Country == "Nigeria"] <- Nigeria
unemplo$Unemployment_NonScaled[unemplo$Country == "France"] <- France
unemplo$Unemployment_NonScaled[unemplo$Country == "Ghana"] <- Ghana
unemplo$Unemployment_NonScaled[unemplo$Country == "Indonesia"] <- Indonesia
unemplo$Unemployment_NonScaled[unemplo$Country == "Columbia"] <- Colombia
unemplo$Unemployment_NonScaled[unemplo$Country == "Turkey"] <- Turkey
unemplo$Unemployment_NonScaled[unemplo$Country == "Hungary"] <- Hungary
unemplo$Unemployment_NonScaled[unemplo$Country == "Thailand"] <- Thailand
unemplo$Unemployment <- as.numeric(scale(unemplo$Unemployment_NonScaled))
unemplo$Unemployment_ZscoreNEGATIVE <- as.numeric(-scale(unemplo$Unemployment_NonScaled))
unemplo <- plyr::arrange(unemplo, unemplo$Country)
head(unemplo)
```
## Index of Economic Freedom (Heritage Found./WSJ)
```{r}
# Excel Way | http://www.heritage.org/index/download
freedom <- read.xlsx("1_RawData/DataSources/index2015_data.xlsx", sheetIndex = 1, endRow = 187)
freedom <- plyr::rename(freedom, c(Country.Name = "Country", X2015.Score = "Freedom_Index", World.Rank = "RankOverall"), warn_duplicated = F)
freedom$Country <- str_trim(freedom$Country, side = "both")
freedom$Country[freedom$Country == "Korea, South"] <- "Korea"
freedom <- subset(freedom, select = c(Country, Freedom_Index, RankOverall))
# convert from factor to numeric
freedom$Freedom_Index <- suppressWarnings(as.numeric(as.character(freedom$Freedom_Index)))
freedom$RankOverall <- suppressWarnings(as.numeric(as.character(freedom$RankOverall)))
freedom <- subset(freedom, Country %in% selectedCountries, select = c(Country, Freedom_Index, RankOverall))
freedom$Freedom_Index_NonScaled <- freedom$Freedom_Index
freedom$Freedom_Index <- as.numeric(scale(freedom$Freedom_Index_NonScaled))
head(freedom)
```
## WEF's Global Competiveness Index (2015/2016)
```{r}
wef <- read.xlsx("1_RawData/DataSources/newRMD/GCR_Rankings_2015-2016.xlsx", sheetName = "GCI 2013-2014")[4:147, 1:3]
wef <- plyr::rename(wef, c("The.Global.Competitiveness.Index.2015.2016.rankings." = "Country", "NA."= "Ranking_WEF", "NA..1" = "WEF_Score"))
wef$Country <- str_trim(wef$Country, side = "both")
# correct names and convert to numeric
# https://stackoverflow.com/questions/3418128/how-to-convert-a-factor-to-an-integer-numeric-without-a-loss-of-information
wef$Country[wef$Country == "Taiwan, China"] <- "Taiwan"
wef$Country[wef$Country == "Korea, Rep."] <- "Korea"
wef$Country[wef$Country == "Russian Federation"] <- "Russia"
wef <- subset(wef, Country %in% selectedCountries)
# normalazing on the sample, not population
wef$WEF_Score_NonScaled <- as.numeric(levels(wef$WEF_Score)[wef$WEF_Score])
wef$WEF_Score <- as.numeric(scale(wef$WEF_Score_NonScaled))
head(wef)
```
## Countries’ H-Index (SCImago)
```{r}
# http://www.scimagojr.com/countryrank.php?area=0&category=0®ion=all&year=all&order=h&min=0&min_type=it as of 30.Sep.2015
hindex <- read.xlsx("1_RawData/DataSources/newRMD/scimagojr.xlsx", sheetIndex = 1)
# sapply(hindex, class) # factors -> to char
hindex$Country <- str_trim(hindex$Country, side = "both")
hindex$Country[hindex$Country == "South Korea"] <- "Korea"
hindex$Country[hindex$Country == "Russian Federation"] <- "Russia"
hindex <- hindex[, !(colnames(hindex) %in% c("Documents", "Citable.documents", "Citations", "Self.Citations", "Citations.per.Document"))]
hindex <- plyr::rename(hindex, c(H.index = "H_Index"))
hindex <- subset(hindex, Country %in% selectedCountries, select = c(Country, Rank, H_Index))
hindex$H_Index_NonScaled <- hindex$H_Index
hindex$H_Index <- as.numeric(scale(hindex$H_Index_NonScaled))
head(hindex)
```
## Combine all datasets
```{r}
# Data here are non scaled, they contain 'the real values'.
df.Original <- dplyr::left_join(unemplo, freedom, by = "Country")
df.Original <- dplyr::left_join(df.Original, wef, by = "Country")
df.Original <- plyr::arrange(df.Original, df.Original$Country)
df.Original <- dplyr::left_join(df.Original, learningCurveData, by = "Country")
df.Original <- plyr::arrange(df.Original, df.Original$Country)
df.Original <- subset(df.Original, select = c(Country, Unemployment_NonScaled,
Freedom_Index_NonScaled, WEF_Score_NonScaled, LearningCurve_Index))
df.Original <- dplyr::left_join(df.Original, hindex, by = "Country")
df.Original <- plyr::arrange(df.Original, df.Original$Country)
df.Original <- dplyr::left_join(df.Original, hdi, by = "Country")
df.Original <- plyr::arrange(df.Original, df.Original$Country)
df.Original <- subset(df.Original, select = c(Country, Unemployment_NonScaled, Freedom_Index_NonScaled, WEF_Score_NonScaled,
LearningCurve_Index, HDIEducatIndex, H_Index_NonScaled))
```
# Imputation of missing values
Based on chapter 2.3, page 20ff.
> ... I am not going to use any of the abovementioned mechanisms for handling missing data, but will
> return to a much simpler method. Namely, given my knowledge, I will choose and assign six values for
> Nigeria, Kenya, Jordan, Ghana, South Africa and the UAE. On the one hand, this is not a
> scientifically good approach as it brings a tangible source of uncertainty on my results. In the
> case of large dataset and/or very high rate of missingness it may be even impossible doing so. On
> the other hand, if data are not available and the reason is not related to other variables in my
> dataset – as it is the case here – it is very hard to impute them in a preferable (‘desired’) way
> even with the most advanced statistical models, simply because data do not exist.
> As result, I decide to assign z-score of -2.1 to Nigeria, -1.9 to South Africa, -1.5 to Kenya,
> -1 to Ghana, -0.5 to Jordan, and finally -0.2 to the UAE. To conclude the whole chapter, I
> would like to point out that the best solution to the problem of missing data is not to have
> a problem of missing data. However, this is often not possible and therefore in this chapter
> I showed several available techniques and finally assigned values to those countries
> considering my best (yet also limited) knowledge of their real situation.
Quoted from my thesis, chapter 2.3, page 22f.
```{r}
df.Original.Imputed <- df.Original
df.Original.Imputed$LearningCurve_Index[df.Original.Imputed$Country == "Nigeria"] <- -2.1
df.Original.Imputed$LearningCurve_Index[df.Original.Imputed$Country == "South Africa"] <- -1.9
df.Original.Imputed$LearningCurve_Index[df.Original.Imputed$Country == "Kenya"] <- -1.5
df.Original.Imputed$LearningCurve_Index[df.Original.Imputed$Country == "Ghana"] <- -1.0
df.Original.Imputed$LearningCurve_Index[df.Original.Imputed$Country == "Jordan"] <- -0.5
df.Original.Imputed$LearningCurve_Index[df.Original.Imputed$Country == "United Arab Emirates"] <- -0.2
df.Original.Imputed <- data.frame(df.Original.Imputed[, -1], row.names = df.Original.Imputed[, 1])
```
# Normalisation
Based on chapter 2.4, page 23f.
> The last normalisation technique, which I want to mention here (also used in the
> construction of my index), is called min-max normalisation.
> ... I am going to use a range between 0 and 100 and as briefly mentioned in the
> chapter about the youth unemployment rate, it will be required to transform its polarity,
> i.e. from having the highest number being the worst to having the lowest number being the
> worst.
Quoted from my thesis, chapter 2.4, page 24.
```{r}
#' create a new data frame (df.Original.MinMax) based on the old one (df.Original.Imputed). This
#' makes 1:1 copy of the data frame, yet with the different name
df.Original.MinMax <- df.Original.Imputed
df.Original.MinMax$WEF_Score_NonScaled <- ((100-0)*(df.Original.Imputed$WEF_Score_NonScaled-1)/ (7-1)) + 0
df.Original.MinMax$H_Index_NonScaled <- ((100-0)*(df.Original.Imputed$H_Index_NonScaled-1)/ (1518-1)) + 0
# HDI's Educat. Index is between 0 and 1 -> convert to (by multipling it with) 0-100
df.Original.MinMax$HDIEducatIndex <- df.Original.Imputed$HDIEducatIndex * 100
#' Unemployment_NonScaled goes into opposite direction, worst South Africa must be the worst, not the best (e.i. that would be
#' the logic without this step).
df.Original.MinMax$Unemployment_NonScaled = ((100-0)*(df.Original.Imputed$Unemployment_NonScaled-100)/ (0-100)) + 0
#' This normalizes columns of 'LearningCurve_Index' from minValue to maxValue. Beware of the colwise function that will be used on
#' on the whole data frame (from plyr)!
#' An assumption is made that although z-score beginngs from -Inf to Inf, I am going to use only a range between +-3.5
#'
#' @param x A data frame
#' @param minValue A minimal value of the range of the scale (e.g. 0)
#' @param maxValue A maximal value of the range of the scale (e.g. 100)
rescaleColumns <- function(x, minValue, maxValue) {
scales::rescale(x, to = c(minValue, maxValue), from = range(-3.5:3.5))
}
df.Original.MinMax$LearningCurve_Index <- plyr::colwise(rescaleColumns)(df.Original.Imputed, 0, 100)[, 4]
```
# Multivariate Analysis
Based on chapter 2.5, page 24ff.
## Principal component analysis
Based on chapter 2.5.1, page 25f.
```{r}
names(df.Original.MinMax) <- c("Unemployment", "Freedom_Index", "WEF_Score", "LearningCurve_Index", "HDIEducat_Index", "H_Index")
corelationMat2 <- cor(df.Original.MinMax)
colorfun2 <- colorRampPalette(c("#ffffcc", "#a1dab4", "#41b6c4", "#2c7fb8", "#253494"))
corrplot(corelationMat2, method = "number", type = "lower", order = "FPC", col = colorfun2(100))
```
```{r}
pc2 <- prcomp(df.Original.MinMax, center = TRUE, scale = FALSE)
summary(pc2)
as.data.frame(round(pc2$rotation, 3))
scree(df.Original.MinMax, factors = TRUE, pc = TRUE)
```
## Factor analysis
Based on chapter 2.5.2, page 28f.
```{r}
options(width=200)
factorAn <- factanal(df.Original.MinMax, rotation = "varimax", factors = 2)
factorAn # SS is sum of squares
communality <- round(cbind(1 - factorAn$uniquenesses), 3)
communality
```
## Cluster analysis (hierarchical clustering)
Based on chapter 2.5.3, page 30ff.
```{r}
#' Hierarchical Clustering
euroclust <- hclust(dist(df.Original.MinMax, method = "euclidean"), "ward.D2")
plot(euroclust, hang = -1)
rect.hclust(euroclust, k = 2, border = "red") # create border for 2 clusters
coef.hclust(euroclust) # agglomerative coef.
```
```{r, echo=FALSE}
options(width=200)
#' Pseudo K-Means - first create wrong clustering and then replace it with the correct one
klust <- kmeans(dist(df.Original.MinMax, method = "euclidean"), 2, nstart = 25, iter.max = 100)
dataWithCluster <- data.frame(df.Original.MinMax, klust$cluster) # append cluster assignment df.Original.MinMax
# now apply the fix -> will become 19 vs. 11
dataWithCluster$klust.cluster[rownames(dataWithCluster) == "Chile"] <- 2
dataWithCluster$klust.cluster[rownames(dataWithCluster) == "Hungary"] <- 2
dataWithCluster$klust.cluster[rownames(dataWithCluster) == "Russia"] <- 2
dataWithCluster$klust.cluster[rownames(dataWithCluster) == "United Arab Emirates"] <- 2
Developing <- sapply(dataWithCluster[dataWithCluster$klust.cluster == "1", ], mean)
Advanced <- sapply(dataWithCluster[dataWithCluster$klust.cluster == "2", ], mean)
aggregate(df.Original.MinMax, by=list(dataWithCluster$klust.cluster), FUN = mean) # gets cluster mean
dfClustMeans <- data.frame(Developing, Advanced)
dfClustMeans <- dfClustMeans[1:6, ]
dfClustMeans$vars <- rownames(dfClustMeans)
dfClustMeans$vars[dfClustMeans$vars == "Unemployment_NonScaled"] <- "Y. Unemployment"
dfClustMeans$vars[dfClustMeans$vars == "Freedom_Index_NonScaled"] <- "Freedom Index"
dfClustMeans$vars[dfClustMeans$vars == "WEF_Score_NonScaled"] <- "WEF's GCI"
dfClustMeans$vars[dfClustMeans$vars == "LearningCurve_Index"] <- "Learning Curve Index"
dfClustMeans$vars[dfClustMeans$vars == "HDIEducatIndex"] <- "HDI's Edu. Index"
dfClustMeans$vars[dfClustMeans$vars == "H_Index_NonScaled"] <- "H-Index"
# sapply(dfClustMeans, class)
dataWithCluster.long <- melt(dfClustMeans) # convert to long format
# table for the picture
dataWithCluster.table <- data.frame(cbind(Indicator = dfClustMeans$vars, Difference=round(dfClustMeans$Advanced-dfClustMeans$Developing,1)))
dataWithCluster.table$Indicator <- as.character(dataWithCluster.table$Indicator)
dataWithCluster.table$Difference <- as.numeric(levels(dataWithCluster.table$Difference))[dataWithCluster.table$Difference]
dataWithCluster.table <- dataWithCluster.table[with(dataWithCluster.table, order(Difference)), ]
row.names(dataWithCluster.table) <- NULL
gp <- ggplot(dataWithCluster.long, aes(x = vars, y = value, group = variable, color = variable))
gp <- gp + geom_line() + geom_point() + ggtitle("Means plot for clusters")
gp <- gp + coord_cartesian(ylim = c(10, 105)) + scale_y_continuous(breaks = seq(10, 105, 5))
gp <- gp + ylab("Mean of each varaible in 2 clusters") + xlab("Indicators") + labs(color = "Types of Countries")
gp <- gp + annotation_custom(grob = tableGrob(as.matrix(dataWithCluster.table)), xmin = 0, xmax = 11, ymin = 0, ymax = 48)
gp
```
# Weighting and aggregation
Based on chapter 2.6, page 34ff.
## Weighting based on factor analysis and my own preference
Based on chapter 2.6.1.1, page 36f.
```{r}
options(width=200)
factor1SquaredLoadings <- factorAn$loadings[, 1]^2
factor2SquaredLoadings <- factorAn$loadings[, 2]^2
Sum_SFL <- sum(factor1SquaredLoadings) + sum(factor2SquaredLoadings) # + sum(factorAn$loadings[, 3]^2)
FactorWeight1 <- sum(factor1SquaredLoadings)/Sum_SFL
FactorWeight2 <- sum(factor2SquaredLoadings)/Sum_SFL
df.weights <- data.frame(Factor1ScaledWeight = factor1SquaredLoadings/sum(factor1SquaredLoadings),
Factor2ScaledWeight = factor2SquaredLoadings/sum(factor2SquaredLoadings))
df.weights$colMax <- apply(df.weights, 1, function(x) max(x[])) # take max values from both columns, yet rowwise!
df.weights$WholeFactorWeight <- c(FactorWeight2, FactorWeight1, FactorWeight2,
FactorWeight1, FactorWeight1, FactorWeight1)
df.weights$Multipl <- df.weights$colMax * df.weights$WholeFactorWeight
df.weights$UnitScaled <- round(df.weights$Multipl / sum(df.weights$Multipl), 4)
df.weights
#' Min-MAX + FA weights
minMaxMultiFA.Weights <- t(t(df.Original.MinMax) * df.weights$UnitScaled)
df.Original.MM.FA <- sort(rowSums(minMaxMultiFA.Weights), decreasing = T)
df.Original.MM.FA <- data.frame(Value = df.Original.MM.FA, RankMM.FA = seq(1:30))
#' Min-MAX + EW
minMaxMultiEqual.Weights <- t(t(df.Original.MinMax) * c(rep(1/6, 6)))
df.Original.MM.EW <- sort(rowSums(minMaxMultiEqual.Weights), decreasing = T)
df.Original.MM.EW <- data.frame(Value = df.Original.MM.EW, RankMM.EW = seq(1:30))
#' Min-MAX + My own choice
minMaxMultiMyChoice.Weights <- t(t(df.Original.MinMax) * c(0.140, 0.170, 0.230, 0.220, 0.130, 0.110))
df.Original.MM.MyChoice <- sort(rowSums(minMaxMultiMyChoice.Weights), decreasing = T)
df.Original.MM.MyChoice <- data.frame(Value = df.Original.MM.MyChoice, RankMM.MC = seq(1:30))
```
# Results
## Positions in the ranking
```{r}
options(width=200)
df.Original.MM.FA$Country <- rownames(df.Original.MM.FA)
df.Original.MM.EW$Country <- rownames(df.Original.MM.EW)
df.Original.MM.MyChoice$Country <- rownames(df.Original.MM.MyChoice)
# all lines are different, doens't have a straight one
df.Original.MM.FAEW <- inner_join(df.Original.MM.FA, df.Original.MM.EW, by= "Country")
df.Original.MM.FAEW.Subset <- subset(df.Original.MM.FAEW, select=c(Country, RankMM.FA, RankMM.EW))
df.Original.MM.FAEWMC <- inner_join(df.Original.MM.FAEW, df.Original.MM.MyChoice, by= "Country")
df.Original.MM.FAEWMC.Subset <- subset(df.Original.MM.FAEWMC, select=c(Country, RankMM.FA, RankMM.EW, RankMM.MC))
df.Original.MM.FAEWMC.Subset
```
## Bar chart decomposition of the Attractiveness Index (MM.FA)
```{r}
df.BackToDetails <- as.data.frame(minMaxMultiFA.Weights)
df.BackToDetails$Country <- rownames(df.BackToDetails)
df.BackToDetails.p1 <- df.BackToDetails[, 1:3]
df.BackToDetails.p1$Country <- rownames(df.BackToDetails.p1)
df.BackToDetails.p2 <- df.BackToDetails[, 4:7]
# Sum rowwise
df.BackToDetails.p2 <- adply(df.BackToDetails.p2, 1, transform, sumEdu = sum(LearningCurve_Index, HDIEducat_Index, H_Index))
df.BackToDetails.p1 <- adply(df.BackToDetails.p1, 1, transform, sumBuEco = sum(Unemployment, WEF_Score, Freedom_Index))
df.BackToDetails <- data.frame(Education = df.BackToDetails.p2$sumEdu,
BussEcon = df.BackToDetails.p1$sumBuEco,
Country = df.BackToDetails.p1$Country)
df.BackToDetails$Country <- as.character(df.BackToDetails$Country)
df.BackToDetails$Country[df.BackToDetails$Country == "United States"] <- "USA"
df.BackToDetails$Country[df.BackToDetails$Country == "United Arab Emirates"] <- "UAE"
df.BackToDetails$Country[df.BackToDetails$Country == "United Kingdom"] <- "UK"
df.BackToDetails$Country[df.BackToDetails$Country == "Czech Republic"] <- "Czech Rep."
df.BackToDetails$Country[df.BackToDetails$Country == "South Africa"] <- "S. Africa"
df.BackToDetails$Country[df.BackToDetails$Country == "New Zealand"] <- "N. Zealand"
# df.BackToDetails$Country[df.BackToDetails$Country == "Switzerland"] <- "Swizerl."
df.meltedBackToDetails <- melt(df.BackToDetails, id = "Country") # convert to long format
e9 <- ggplot(data = df.meltedBackToDetails, aes(reorder(Country, value), fill = variable, weight = value)) + geom_bar()
e9 <- e9 + coord_cartesian(ylim = c(0, 100)) + scale_y_continuous(breaks = seq(0, 100, 5))
e9 <- e9 + ggtitle("Bar chart decomposition of the Attractiveness Index (MM.FA)") + scale_fill_discrete(name = "Dimensions")
e9 <- e9 + ylab("Index Value") + xlab("Countries")
e9
# Table
EducatValue <- cbind(df.BackToDetails$Education / (df.BackToDetails$Education + df.BackToDetails$BussEcon))
BusinessValue <- cbind(df.BackToDetails$BussEcon / (df.BackToDetails$Education + df.BackToDetails$BussEcon))
df.BackToDetails.table <- data.frame(cbind(df.BackToDetails$Country), EducatValue, BusinessValue)
head(df.BackToDetails.table)
```
## Comparison of 3 weighting methods (FA/EW/'my choice')
```{r, echo=FALSE}
meltingOriginal.MM.FA.Subset <- melt(df.Original.MM.FA[, c("Country", "RankMM.FA")], id = "Country")
meltingOriginal.MM.EW.Subset <- melt(df.Original.MM.EW[, c("Country", "RankMM.EW")], id = "Country")
meltingOriginal.MM.MC.Subset <- melt(df.Original.MM.MyChoice[, c("Country", "RankMM.MC")], id = "Country")
meltingOriginal.MM.FA.Subset$Country[meltingOriginal.MM.FA.Subset$Country == "United States"] <- "USA"
meltingOriginal.MM.FA.Subset$Country[meltingOriginal.MM.FA.Subset$Country == "United Arab Emirates"] <- "UAE"
meltingOriginal.MM.FA.Subset$Country[meltingOriginal.MM.FA.Subset$Country == "United Kingdom"] <- "UK"
meltingOriginal.MM.FA.Subset$Country[meltingOriginal.MM.FA.Subset$Country == "Czech Republic"] <- "Czech Rep."
meltingOriginal.MM.FA.Subset$Country[meltingOriginal.MM.FA.Subset$Country == "South Africa"] <- "S. Africa"
meltingOriginal.MM.EW.Subset$Country[meltingOriginal.MM.EW.Subset$Country == "United States"] <- "USA"
meltingOriginal.MM.EW.Subset$Country[meltingOriginal.MM.EW.Subset$Country == "United Arab Emirates"] <- "UAE"
meltingOriginal.MM.EW.Subset$Country[meltingOriginal.MM.EW.Subset$Country == "United Kingdom"] <- "UK"
meltingOriginal.MM.EW.Subset$Country[meltingOriginal.MM.EW.Subset$Country == "Czech Republic"] <- "Czech Rep."
meltingOriginal.MM.EW.Subset$Country[meltingOriginal.MM.EW.Subset$Country == "South Africa"] <- "S. Africa"
meltingOriginal.MM.MC.Subset$Country[meltingOriginal.MM.MC.Subset$Country == "United States"] <- "USA"
meltingOriginal.MM.MC.Subset$Country[meltingOriginal.MM.MC.Subset$Country == "United Arab Emirates"] <- "UAE"
meltingOriginal.MM.MC.Subset$Country[meltingOriginal.MM.MC.Subset$Country == "United Kingdom"] <- "UK"
meltingOriginal.MM.MC.Subset$Country[meltingOriginal.MM.MC.Subset$Country == "Czech Republic"] <- "Czech Rep."
meltingOriginal.MM.MC.Subset$Country[meltingOriginal.MM.MC.Subset$Country == "South Africa"] <- "S. Africa"
me1 <- ggplot()
# green
me1 <- me1 + geom_line(data=meltingOriginal.MM.FA.Subset, aes(reorder(Country, value), value, colour=variable, group = variable))
me1 <- me1 + geom_point(data=meltingOriginal.MM.FA.Subset, aes(reorder(Country, value), value, colour=variable, group = variable), size = 4, shape=21, fill="white")
# red
me1 <- me1 + geom_line(data=meltingOriginal.MM.EW.Subset, aes(reorder(Country, value), value, colour=variable, group = variable))
me1 <- me1 + geom_point(data=meltingOriginal.MM.EW.Subset, aes(reorder(Country, value), value, colour=variable, group = variable), size = 4, shape=21, fill="white")
# blue
me1 <- me1 + geom_line(data=meltingOriginal.MM.MC.Subset, aes(reorder(Country, value), value, colour=variable, group = variable))
me1 <- me1 + geom_point(data=meltingOriginal.MM.MC.Subset, aes(reorder(Country, value), value, colour=variable, group = variable), size = 4, shape=21, fill="white")
# all together
me1 <- me1 + coord_cartesian(ylim = c(0, 35)) + scale_y_continuous(breaks = seq(0, 35, 1))
me1 <- me1 + ggtitle("Comparison of 3 weighting methods (FA/EW/'my choice')") + ylab("Positions") + xlab("Countries") + labs(color = "We/No methods")
me1
```
## Comparison of different weights based on Min-Max norm. method
```{r, echo=FALSE}
# Now melt them all
meltingOriginal.MM.FAEW.Subset <- melt(df.Original.MM.FAEW.Subset, id="Country")
meltingOriginal.MM.FAEWMC.Subset <- melt(df.Original.MM.FAEWMC.Subset, id = "Country")
meltingOriginal.MM.FAEWMC.Subset$Country[meltingOriginal.MM.FAEWMC.Subset$Country == "United States"] <- "USA"
meltingOriginal.MM.FAEWMC.Subset$Country[meltingOriginal.MM.FAEWMC.Subset$Country == "United Arab Emirates"] <- "UAE"
meltingOriginal.MM.FAEWMC.Subset$Country[meltingOriginal.MM.FAEWMC.Subset$Country == "United Kingdom"] <- "UK"
meltingOriginal.MM.FAEWMC.Subset$Country[meltingOriginal.MM.FAEWMC.Subset$Country == "Czech Republic"] <- "Czech Rep."
meltingOriginal.MM.FAEWMC.Subset$Country[meltingOriginal.MM.FAEWMC.Subset$Country == "South Africa"] <- "S. Africa"
me3 <- ggplot(data=meltingOriginal.MM.FAEWMC.Subset, aes(reorder(Country, value), value, colour = variable, group = variable))
me3 <- me3 + geom_line() + geom_point(size = 4, shape=21, fill="white")
me3 <- me3 + coord_cartesian(ylim = c(0, 30)) + scale_y_continuous(breaks = seq(0, 30, 1))
me3 <- me3 + ggtitle("Comparison of different weights based on Min-Max norm. method")
me3 <- me3 + ylab("Position in Ranking") + xlab("Countries") + labs(color = "Weights")
me3
```
## Comparison of 3 weighting methods (FA/EW/'my choice')
```{r, echo=FALSE}
qwer1 <- melt(df.Original.MM.FA[, c("Country", "Value")], id = "Country")
qwer1$variable <- as.character(qwer1$variable)
qwer2 <- melt(df.Original.MM.EW[, c("Country", "Value")], id = "Country")
qwer2$variable <- as.character(qwer2$variable)
qwer3 <- melt(df.Original.MM.MyChoice[, c("Country", "Value")], id = "Country")
qwer3$variable <- as.character(qwer3$variable)
# sapply(qwer1, class)
qwer1$variable[qwer1$variable == "Value"] <- as.character("RankMM.FA")
qwer2$variable[qwer2$variable == "Value"] <- "RankMM.EW"
qwer3$variable[qwer3$variable == "Value"] <- "RankMM.MC"
qwer1$Country[qwer1$Country == "United States"] <- "USA"
qwer1$Country[qwer1$Country == "United Arab Emirates"] <- "UAE"
qwer1$Country[qwer1$Country == "United Kingdom"] <- "UK"
qwer1$Country[qwer1$Country == "Czech Republic"] <- "Czech Rep."
qwer1$Country[qwer1$Country == "South Africa"] <- "S. Africa"
qwer2$Country[qwer2$Country == "United States"] <- "USA"
qwer2$Country[qwer2$Country == "United Arab Emirates"] <- "UAE"
qwer2$Country[qwer2$Country == "United Kingdom"] <- "UK"
qwer2$Country[qwer2$Country == "Czech Republic"] <- "Czech Rep."
qwer2$Country[qwer2$Country == "South Africa"] <- "S. Africa"
qwer3$Country[qwer3$Country == "United States"] <- "USA"
qwer3$Country[qwer3$Country == "United Arab Emirates"] <- "UAE"
qwer3$Country[qwer3$Country == "United Kingdom"] <- "UK"
qwer3$Country[qwer3$Country == "Czech Republic"] <- "Czech Rep."
qwer3$Country[qwer3$Country == "South Africa"] <- "S. Africa"
tyr2 <- ggplot()
tyr2 <- tyr2 + geom_line(data=qwer1, aes(reorder(Country, value), value, group = variable, colour=variable))
tyr2 <- tyr2 + geom_point(data=qwer1, aes(reorder(Country, value), value, group = variable, colour=variable), size = 2, shape=21, fill="white")
tyr2 <- tyr2 + geom_line(data=qwer2, aes(reorder(Country, value), value, group = variable, colour=variable))
tyr2 <- tyr2 + geom_point(data=qwer2, aes(reorder(Country, value), value, group = variable, colour=variable), size = 2, shape=21, fill="white")
tyr2 <- tyr2 + geom_line(data=qwer3, aes(reorder(Country, value), value, group = variable, colour=variable))
tyr2 <- tyr2 + geom_point(data=qwer3, aes(reorder(Country, value), value, group = variable, colour=variable), size = 2, shape=21, fill="white")
tyr2 <- tyr2 + coord_cartesian(ylim = c(35, 85)) + scale_y_continuous(breaks = seq(30, 85, 2))
tyr2 <- tyr2 + ggtitle("Comparison of 3 weighting methods (FA/EW/'my choice')") + ylab("Index Value") + xlab("Countries")
tyr2
```
## Box Plot of 3 weighting methods
```{r, echo=FALSE}
me2 <- ggplot()
me2 <- me2 + geom_line(data=meltingOriginal.MM.FA.Subset, aes(reorder(Country, value), value, colour=variable, group = variable), colour="green")
me2 <- me2 + geom_point(data=meltingOriginal.MM.FA.Subset, aes(reorder(Country, value), value, colour=variable, group = variable), size = 3, shape=21, fill="white")
me2 <- me2 + geom_boxplot(data=meltingOriginal.MM.FAEWMC.Subset, aes(reorder(Country, value), value))
me2 <- me2 + coord_cartesian(ylim = c(0, 35)) + scale_y_continuous(breaks = seq(0, 35, 1))# + scale_colour_manual(values=c("green - FA weights"))
me2 <- me2 + ylab("Position in Ranking") + xlab("Countries") + ggtitle("Box Plot of 3 weighting methods")
me2
```
## Relationship between GDP and my Attractiveness Index (MM.FA)
```{r, echo=FALSE, message=FALSE, warning=FALSE}
###################
# Sources: https://stackoverflow.com/questions/24954624/error-in-download-file-no-such-file-or-directory
# gdp projections from 2015 IMF
# https://www.imf.org/external/pubs/ft/weo/2015/01/weodata/index.aspx
# https://www.imf.org/external/pubs/ft/weo/2015/01/weodata/weorept.aspx?sy=2015&ey=2015&scsm=1&ssd=1&sort=country&ds=.&br=0&pr1.x=49&pr1.y=10&c=512%2C668%2C914%2C672%2C612%2C946%2C614%2C137%2C311%2C962%2C213%2C674%2C911%2C676%2C193%2C548%2C122%2C556%2C912%2C678%2C313%2C181%2C419%2C867%2C513%2C682%2C316%2C684%2C913%2C273%2C124%2C868%2C339%2C921%2C638%2C948%2C514%2C943%2C218%2C686%2C963%2C688%2C616%2C518%2C223%2C728%2C516%2C558%2C918%2C138%2C748%2C196%2C618%2C278%2C624%2C692%2C522%2C694%2C622%2C142%2C156%2C449%2C626%2C564%2C628%2C565%2C228%2C283%2C924%2C853%2C233%2C288%2C632%2C293%2C636%2C566%2C634%2C964%2C238%2C182%2C662%2C453%2C960%2C968%2C423%2C922%2C935%2C714%2C128%2C862%2C611%2C135%2C321%2C716%2C243%2C456%2C248%2C722%2C469%2C942%2C253%2C718%2C642%2C724%2C643%2C576%2C939%2C936%2C644%2C961%2C819%2C813%2C172%2C199%2C132%2C733%2C646%2C184%2C648%2C524%2C915%2C361%2C134%2C362%2C652%2C364%2C174%2C732%2C328%2C366%2C258%2C734%2C656%2C144%2C654%2C146%2C336%2C463%2C263%2C528%2C268%2C923%2C532%2C738%2C944%2C578%2C176%2C537%2C534%2C742%2C536%2C866%2C429%2C369%2C433%2C744%2C178%2C186%2C436%2C925%2C136%2C869%2C343%2C746%2C158%2C926%2C439%2C466%2C916%2C112%2C664%2C111%2C826%2C298%2C542%2C927%2C967%2C846%2C443%2C299%2C917%2C582%2C544%2C474%2C941%2C754%2C446%2C698%2C666&s=PPPPC&grp=0&a=
###################
GDPperCapitaIMF <- read.delim("1_RawData/DataSources/GDPIMF.txt")
GDPperCapitaIMF$X2015 = str_replace_all(GDPperCapitaIMF$X2015, ",", "")
GDPperCapitaIMF = GDPperCapitaIMF[-188, ]
GDPperCapitaIMF$X2015 = as.numeric(GDPperCapitaIMF$X2015)
names(GDPperCapitaIMF)[names(GDPperCapitaIMF) == "X2015"] <- "GDPinDollars"
# https://stat.ethz.ch/pipermail/r-help/2011-April/274149.html
TigersGDP = subset(GDPperCapitaIMF, Country %in% c("Korea", "Singapore", "Japan", "Chile", "Czech Republic", "Nigeria", "China", "Germany", "Switzerland",
"Mexico", "Jordan", "Brazil", "Russia", "United States", "United Kingdom", "United Arab Emirates", "Australia", "South Africa",
"Kenya", "Finland", "Canada", "Israel", "New Zealand", "France", "Hungary", "Thailand", "Indonesia", "Ghana", "Colombia", "Turkey"),
select = c(Country, GDPinDollars))
df.Original.MM.FA.special <- df.Original.MM.FA
df.Original.MM.FA.special$Country <- rownames(df.Original.MM.FA)
gdpTiger <- dplyr::full_join(TigersGDP, df.Original.MM.FA.special, by = "Country")
f18 <- ggplot(data=gdpTiger, aes(x = Value, y = GDPinDollars, label=Country))
f18 <- f18 + geom_point() + geom_text(aes(label=Country), hjust=0, vjust=0) + stat_smooth(method="lm", se=FALSE)
f18 <- f18 + coord_cartesian(ylim = c(0, 85000)) + scale_y_continuous(breaks = seq(0, 85000, 5000))
f18 <- f18 + coord_cartesian(xlim = c(35, 90)) + scale_x_continuous(breaks = seq(35, 90, 2))
f18 <- f18 + ggtitle("Relationship between GDP and my Attractiveness Index (MM.FA)") + ylab("GDP (PPP) per Capita, 2015")
f18 <- f18 + xlab("Index Value, score between 35-90")
f18
```
Is there any correlation between two values
```{r}
cor(gdpTiger$Value, gdpTiger$GDPinDollars)
```