-
Notifications
You must be signed in to change notification settings - Fork 0
/
ssim.py
92 lines (72 loc) · 3.39 KB
/
ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy as np
import torch
import torch.nn.functional as F
class SSIM(torch.nn.Module):
"""SSIM. Modified from:
https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py
"""
def __init__(self, window_size=11, size_average=True, is_video=False, order='bcthw'):
super().__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = self._create_window(window_size, self.channel)
self.is_video = is_video
self.order = order
if self.is_video:
if order == 'bcthw':
self.default_order = True
elif order == 'btchw':
self.default_order = False
else:
raise NotImplementedError("use 'bcthw' or 'btchw' channels order for video")
def forward(self, img1, img2):
assert len(img1.shape) == 5 if self.is_video else 4
if not self.is_video:
channel = img1.size()[1]
elif self.order == 'bcthw':
channel = img1.size()[1]
elif self.order == 'btchw':
channel = img1.size()[2]
else:
raise NotImplementedError()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = self._create_window(self.window_size, channel)
window = window.to(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
if self.is_video:
if self.order == 'bcthw':
img1.transpose_(1, 2)
img2.transpose_(1, 2)
img1 = img1.reshape(img1.shape[0] * img1.shape[1], img1.shape[2], img1.shape[3], img1.shape[4])
img2 = img2.reshape(img2.shape[0] * img2.shape[1], img2.shape[2], img2.shape[3], img2.shape[4])
return self._ssim(img1, img2, window, self.window_size, channel, self.size_average)
def _gaussian(self, window_size, sigma):
gauss = torch.tensor([
np.exp(-(x - (window_size // 2)) ** 2 / float(2 * sigma ** 2))
for x in range(window_size)
])
return gauss / gauss.sum()
def _create_window(self, window_size, channel):
_1D_window = self._gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
return _2D_window.expand(channel, 1, window_size, window_size).contiguous()
def _ssim(self, img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=(window_size // 2), groups=channel)
mu2 = F.conv2d(img2, window, padding=(window_size // 2), groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=(window_size // 2), groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=(window_size // 2), groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=(window_size // 2), groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
return ssim_map.mean(dim=[1, 2, 3])